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Abstract

We document how within-city inequality vary across cities. While the residual
wage gaps between the top and the median earners increase with the city size, the gaps
between the median and the bottom earners shrink. We develop a spatial equilibrium
model where heterogeneous individuals sort into entrepreneurs or workers in different
industries and cities. Entrepreneurs benefit more than workers in larger cities due
to knowledge spillovers, leading to higher top inequality. Bottom inequality shrinks
in larger cities because low-income workers must be compensated to overcome the
higher living costs. Empirical tests using U.S. data broadly support our theoretical
predictions.

Keywords: wage inequality; sorting; wage distribution; city size; inter-industry wage
premium.

JEL Classification: F12; J24; J31; R10; R23

∗Email address: ecsml@nus.edu.sg, tangyang@ntu.edu.sg, respectively. The authors are grateful for stim-
ulating discussions with Costas Arkolakis, Costas Azariadis, Davin Chor, Andrei Levecheko, Wen-Tai Hsu,
and Ping Wang. We also greatly benefit from valuable suggestions and comments of various seminar and
conferences at National University of Singapore, Nanyang Technological University, Singapore Management
University, the Public Economic Theory Meeting 2015, the Society of Economics Theory Meeting 2015,
Taipei International Conference on Growth, Dynamics, and Trade 2016, and the Asian Meeting of Econo-
metric Society 2016. We are solely responsible for the remaining errors.



1 Introduction

Empirical studies often suggest that larger cities are unequal than smaller ones. Baum-Snow

and Pavan (2013) document a positive relationship between city size and wage inequality

in the U.S. during 1979-2007. Similarly, Behrens and Robert-Nicoud (2015) also estimate

a positive city size elasticity of the income Gini coefficient at around 0.011.1 However,

inequality is a multifaceted concept; often, inequality measured at different parts of the

distribution could behave differently. For example, the macroeconomic literature has shown

that at the national level, the inequality measured at the right tail, such as the 90-50 ratios,

have been steadily increasing over time, but measures took at the left tail, such as the

50-10 ratios, have been stable or even slightly declining since the 1980s.2 In this paper,

we document and rationalize the same complexity in the context of within-city inequality:

larger cities are not always more unequal, and the exact answer depends on which part of

the distribution we are examining.

We document a U-shape relationship between residual wage and city size in the United

States: the residual wage rates at the top and the bottom percentiles increase faster with

city size than those in the middle. Figure 1 summarizes the result: it plots the elasticity of

residual wage rates with respect to city size at different percentiles in the U.S.3 While the

residual wage rates across the distribution are higher in larger cities, they increase with city

size at different speeds. Particularly, the wage around the median increase at slower rates as

compared to both the left and the right tail. For example, the city size elasticity around the

median is 25 percent lower than that at the 5th percentile, and 33 percent lower than that

at the 95th percentile.4 This implies that while the right-tail inequality (95-50 gap) is higher

in larger cities, the left-tail inequality (50-5 gap) is lower. We confirm that it is indeed the

1For more empirical literature on this issue, see Glaeser et al. (2009), Berube (2014), and Berube and
Holmes (2015).

2For details, see Heathcote et al. (2010) for time trends of various measures of wage, earnings, and income
inequality in the US. Piketty and Saez (2003) shows that even within the measures taken at the right tail,
income shares at different percentiles exhibit different trends over time.

3Data source is Public Use Microdata Series (PUMS) in year 2000. City is defined as MSA. The residual
wage rate is the observed wage rate with individual characteristics such as age, years of education, race, and
marital status filtered out. See details in Section 2.

4The city size elasticity is 0.04, 0.03, and 0.045 at the 5th, 50th, and the 95th percentile as shown in
Figure 1, respectively. The difference between the left (right) tail and the median is 1 − 0.03/0.04 = 0.25
(1− 0.03/0.045 = 0.33).
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case: while the size elasticity of the 95-50 gap is positive at around 0.026, the size elasticity

of the 50-05 gap stands significantly negative at around -0.012. This contrasting pattern in

city size inequality is also robust: it can be observed for a wide rage of percentile-ratios at

both the left and the right tail; it is robust to different ways of estimating the residual wage

as well as the unfiltered raw wage, and it is also robust across different measures of city size.
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Figure 1: City Size Elasticity of Residual Wage at Different Percentiles

Note: This figure reports the city size elasticity of wage rate (α1) at different percentiles from Equation (2).
The dashed line is 95 percent confidence interval. See Section 2 for details. Data source: IPUMS-USA, 2000.

Two channels can potentially explain the observed pattern of within-city inequality: the

variations in 1) inter-industry wage premium and 2) the entrepreneurship premium across

cities. Firms within the same industries usually pay higher wage in larger cities in our data.

However, we find that the wage rate in low-paying industries grows faster with city size as

compared to high-paying industries, leading to smaller wage gaps between high- and low-

paying industries in large cities. To the extent that workers are likely to occupy the middle

and the lower segments of the income distribution, the spatial variations in inter-industry

wage premium can potentially explain the compression of the left-tail inequality. On the

other find, we document that the return to entrepreneurship raises with city size, leading

to larger gaps between entrepreneurs and workers in larger cities. As entrepreneurs are also

likely to be the top earners in each city, the spatial variations of entrepreneurship premium
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can potentially explain why the right-tail inequality is higher in larger cities.

To validate and quantify the relationship between inter-industry wage premium, en-

trepreneurship premium, and within-city inequality, we carry out two “counter-factual”

econometric exercises. In the first exercise, we control for industry-city or occupation-city

fixed effects when computing the residual wage to eliminate the spatial variations along

these two dimensions. Once the industry-city fixed effects are controlled for, the pattern

for left-tail inequality completely disappears, as larger cities no longer see lower inequality

in the left-tail. Once we control for the occupation-city fixed effects, the positive relation-

ship between city size and right-tail inequality drops by around 27 percent. In the second

“counter-factual” exercise, we reconstruct the individual wage in data by eliminating the

variance of inter-industry and entrepreneurship premium across cities. Once we remove the

variance of the inter-industry wage premium across cities, the negative relationship between

city size and inequality measured at the left tail weakens by around 50 percent. Similarly,

once we eliminate the spatial variations of entrepreneurship, the city size elasticity at the

right tail shrank by between 19 to 29 percent respectively.

In light of the empirical findings, we propose a simple spatial model in which the three

pieces of empirical pattern emerge in equilibrium. In the model world, individuals with

different levels of human capital choose a city to live in, and an industry and occupation cell

to work in to maximize utility. We assume that industries and occupations vary in the entry

barriers, and cities also differ in the congestion disutility that rises with an endogenously

determined population. In equilibrium, location-industry-occupation choices with higher

entry barriers might also offer higher return to human capital to attract people. As a

result, assortative matching arises such that individuals with higher human capital sort

into location-industry-occupation cells with higher entry barriers and higher returns. Across

cities, assortative matching means that individuals with higher human capital reside in larger

cities. Across industries, talented individuals join industries with higher entry barriers.

Within industries, individuals can choose occupations: they can either create new firms

by paying an extra fixed cost, or work for the existing firms. The additional barrier to

entrepreneurship ensures that the most talented individuals choose to create new firms. In

equilibrium, wage rates are endogenously determined in each city-industry-occupation cell,
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and the model delivers the three empirical patterns documented above in equilibrium.

Inequality measured at the right tail is higher in larger cities in our model. This is because

the top earners in each city, the entrepreneurs, benefit more from city size as compared to

the rest of the population. The spatial variation of the entrepreneurship premium depends

on two mechanisms: 1) the income of the entrepreneurs positively depends on the size of

the firm they manage, and 2) the average firm size increases faster with respect to city size

as compared to the wage rates of workers. The first mechanism is our assumption based

on both the empirical and the theoretical findings in the corporate finance literature.5 The

second mechanism is an equilibrium result derived from the assortative matching described

before. Large cities are populated by large and productive firms which push up the factor

prices and push down output prices in equilibrium, making them tougher for smaller firms

to operate in. To retain the marginal entrepreneur in the large city, the factor market must

compensate him not only the differences in congestion disutilities but also the differences in

profit induced by market conditions between large and small cities. In contrast, the market

in large cities only needs to compensate the marginal workers the increments in congestion

disutility. As a result, the wage rate will increase with city size at a slower pace as opposed

to firm size and entrepreneurial compensation. This mechanism is also supported by the

empirical literature, which often found that the city size elasticity of firm size is higher than

that of the wage rate.6

Meanwhile, the inequality measured at the left tail is smaller in large cities. Within the

group of workers, the wage rates in all industries are higher in larger cities to compensate

higher congestion costs.7 However, the wage rate of lower-paying industries increase faster

5The positive relationship between entrepreneurial income and firm size has been extensively documented
in the executive compensation literature since Roberts (1956). It is also the equilibrium compensation scheme
found in a wide array of models of executive pay, such as in Gabaix and Landier (2008). We abstract away
from the details of an executive compensation model, directly assume the Roberts’ Law, and focus on its
impact on inequality.

6For example, the city-size elasticity of firm employment is found to be between 0.5 and 0.7, such as in
Glaeser and Kerr (2009) and Glaeser (2007). In contrast, the city-size elasticity of wage or earnings is usually
between 0.05 and 0.1. See Roback (1982), Combes et al. (2008), Tabuchi and Yoshida (2000), Glaeser and
Mare (2001) and Baum-Snow and Pavan (2012) for more details.

7One can interpret the higher congestion disutility as higher price levels in larger cities. Handbury
and Weinstein (2015) documents that food price is lower in larger cities; however other price, especially
housing price, is significantly higher in larger cities as documented in Moretti (2013). Housing costs are also
responsible for a large fraction of household expenditure, and thus in the reality the aggregate price level in
larger cities might still be higher than in smaller ones.
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with city size in our model, the same as documented in the data; otherwise, the workers in

these industries, who have fewer units of efficiency labor supply, will not have enough income

to overcome the high living costs in large cities. Instead, they will either migrate to smaller

cities or invest in education to join a higher-paying industry. However, every city needs the

outputs from the low-skill, low-paying industries — janitors, cashiers, or street vendors —

to function properly, which implies that the market must compensate those working in such

industries relatively more in the equilibrium.

In addition to the theoretical results on inequality and industry-occupation premium,

we also provide conditions under which a unique sorting equilibrium emerges in our model.

Similar to many models in the economic geography literature, assortative matching in itself

cannot pin down a unique equilibrium in our case. We prove that under a family of distribu-

tions of city size, which include power law and exponential distributions often documented in

the empirical literature, the sorting patterns can be exactly characterized in our model. The

key to our proof is the recurrence relations of order statistics in distributions well-studied in

the statistics literature.8 We show that the recurrence property can be used to reduce the

number of potential sorting patterns in our model, and we believe our method and findings

can be useful to other researchers in related fields.

Our paper is related to several strands of existing literature. First and foremost, we

contribute to the empirical literature on within-city inequality. Baum-Snow and Pavan

(2013) document that wage inequality is higher in larger cities for both the 90-50 and the

50-10 percentile. Wheeler (2004, 2005) show that the return to skills and wage inequality

both increase with city size. Glaeser et al. (2009) and Behrens and Robert-Nicoud (2015) also

document that the Gini coefficient is higher in larger cities. We highlight that the relationship

between city size and within-city inequality is sensitive to the empirical specification and

sample. Different from Baum-Snow and Pavan (2013), we control for city-level characteristics

such as the average years of education, the racial composition, and the state in which the

MSA is located in our estimation. We show that while the right-tail inequality is not sensitive

to these control variables, the left-tail inequality is indeed sensitive. The samples in Baum-

Snow and Pavan (2013) and Wheeler (2004, 2005) are all restricted to the white males,

8See Balakrishnan and Sultan (1998) for a survey of this topic.
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and Wheeler (2005) only focuses on a selection of large cities. Our sample includes all

male working population regardless of race in all MSAs with available data. Similar to

our finding, Combes et al. (2012b) also find left-tail compression and right-tail dilution of

within-city wage rate distribution in the French data.

On the theoretical side of the literature, Behrens et al. (2014), Behrens and Robert-

Nicoud (2014), Davis and Dingel (2012), and Eeckhout et al. (2014) provide models in

which within-city inequality vary across cities, and all the models predict higher inequality

in larger cities. Our model instead allows for a flexible pattern of within-city inequality.

Behrens et al. (forthcoming) provide a similar framework that embodies a Melitz-type trade

model and entrepreneurship. While they focus on how market size affects entrepreneur entry,

exit, and inequality, we focus on how market size affects inequality through industry and

occupation premiums.

Our work is also related to the literature on the spatial variations of skill premium.

Bacolod et al. (2009) find that large cities are more skilled than small cities in measures of

skill other than education. Roback (1982), Combes et al. (2008), Davis and Dingel (2012)

and Baum-Snow and Pavan (2012) provide the theoretical foundation and empirical support

on the spatial sorting of skills and the city-size premium of skills. Hendricks (2011) show

that larger cities tend to attract more skilled workers, and De la Roca and Puga (2017)

show that the earnings premium in large cities is mainly due to learning effects. We extend

this line of work by showing that the return to different skills increases with city size at

different speeds, which in turn leads to rich patterns of inequality. A long tradition in the

urban literature following Henderson (1974) emphasizes the role of specialization of industries

across cities. Complementing to this literature, we show that the sorting of workers within

the same industry can also explain a sizable proportion of the observed spatial variation of

skill-premiums. Related to the skill premium, another strand of the literature, motivated by

the works of Rosen (1987), Krueger and Summers (1988), and Katz et al. (1989), studies the

determination of inter-industry wage premium. Our work is the first to explore the spatial

dimension and provides a theoretical foundation on which inter-industry wage premium can

vary systematically across cities.

Our paper is broadly related to the new economic geography literature, such as Combes
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et al. (2008), Gaubert (2017) and Tombe and Zhu (2015). We contribute to this literature by

introducing a tractable framework with multi-dimensional sorting. We show that under rea-

sonable assumptions, the sorting pattern and the equilibrium outcome are both unique, and

thus the model can be used to study the distributional impacts of agglomeration, migration,

and inter-city trade quantitatively in future works.

The rest of the paper is organized as follows. Section 2 documents the spatial variations of

within-city inequality, inter-industry wage premium, and entrepreneurship premium. Section

3 presents the model, and Section 4 discusses the analytical results. Section 5 concludes.

2 Empirical Results

In this section, we first document that top and bottom wage inequality within a city moves

in opposite directions with respect to city size. We then proceed to present two pieces

of supporting evidence outlining the potential mechanisms: the spatial variations of inter-

industry wage premium and entrepreneurial wage premium, and its relationship to within-

city inequality. In the next section, we proceed to build the model that features these

mechanisms and use them to explain the observed pattern of within-city inequality. In

this sense, the supporting empirical evidence can also be interpreted as tests on our model

mechanisms.

2.1 Data

All the empirical evidence is based on the individual level data from the Integrated Public

Use Microdata Series (IPUMS) compiled by the University of Minnesota (Ruggles et al.

(2010)). We use the 5 percent sample in the year 2000. We impose a few conventional sample

restrictions. We drop the individuals 1) not in the labor force or unemployed, 2) working

in government, military, religious and other non-profit entities, 3) the seasonal workers who

work less than 10 weeks in the last year, and 4) those whose wage is lower than the federal

minimum wage. Following Baum-Snow and Pavan (2013), we restrict our analysis to males,

so the results are not compounded by gender wage premium. We interpret the Metropolitan

Statistical Area (MSA) in which the individual works as the “city.” We measure “raw wage”
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as the ratio between total wage income and usual hours worked.

Our final sample contains around 1.23 million individuals working in 254 MSAs.9 The

median “city” in our sample hosts 12,638 individuals, and the smallest “city” contains 445

individuals. More than 75 percent of our cities include at least 4,000 individuals. The large

sample size in each city allows us to compute the percentile ratios within each city. We

provide a detailed description of the data set and the variables constructed in Appendix B.

We use three measures of city size: 1) the private regional industry GDP, and 2) the total

regional GDP, and 3) population. The first two measures are obtained from the Bureau of

Economic Analysis (BEA) in 2001, and the last measure comes from the census in 2000.

The results from all three measures only differ marginally, and therefore we only present

and discuss the results based on private industry GDP in the main text. We report the

robustness checks using the other two measures in the appendix.

2.2 City Size and Within-City Inequality

Consistent with our model presented later, we study residual wage inequality after controlling

for individual characteristics with the following Mincer regression:

ln(Wi) = β0 + β1 ·Xi + εi, (1)

where Wi is the observed wage and Xi includes the years of education, age, marital status,

and race of individual i. We use the residuals from the regression, ε̂i, to compute all the

measures of inequality in the baseline results.

We first measure how income at different percentiles vary across cities with the following

equation:

ε̂jq = α0 + α1 lnY j + a · Zj + uj, (2)

where j indexes the city, Y j is the measure of city size, and Zj is a vector that controls for

9The number of MSAs in the sample increases to 264 if we use population as the measure of city size.
The difference exists because the BEA only reports GDP at the more aggregated CMSA level, while the
population data from the census are more dis-aggregated at the MSA level.
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city-level characteristics, such as the average years of education, the share of the white popu-

lation, and state dummy variables.10 The left-hand-side variable, ε̂jp, is the p = 5, 6, · · · 95-th

percentile of residual wage in city j. The coefficient of interest is α1 plotted in Figure 1 in

the introduction. Residual wage at all percentiles increase with city size, but at different

speeds. A U-shape emerges: the wage at the top and the bottom percentiles increases faster

with city size than those in the middle. The graph suggests that the top inequalities such

as the 95-50 and 90-50 gaps shall be higher, and the bottom inequalities such as the 50-10

and 50-5 gaps shall be lower in larger cities. At the same time, inequality measure such as

the 75-to-25 or 90-to-10 ratios shall not vary across cities.

To confirm the pattern of inequality suggested in Figure 1, we first define tail inequality

between the q > p-th percentile of residual wage within city j as:11

Ineqjq,p = ln
(
ε̂jq − ε̂jp

)
.

We then study how these measures of inequality vary with the city size with the following

equation:

Ineqjq,p = β0 + β1 lnY j + b · Zj + uj, (3)

where Y j and Zj are the same as defined in (2).

Table 1 reports the findings. The first two columns of the table report inequality measured

at the left tail such as the 50-05 and 50-10 residual wage gaps and the last two columns report

the right tail with the 95-50 and 90-50 gaps.12 All the estimates of β1 at the right tail are

significantly greater than zero. This is consistent with the literature: the size of the city

is positively correlated with the wage gap at the top of the distribution. On average a one

percent increase in city size is associated with 0.017-0.026 percent increase in the 95-50 or

10Some MSAs span over multiple states. We assign the MSA to the state where most of its population
lives in these cases.

11A common practice in the literature is to use ratios between different percentiles of observed wage
as measures of inequality. However, as residual wages contain negative values, taking the ratios is not
informative. Therefore we take the differences between the percentiles to ensure that the measures are
always positive, which in turn allows us to take logarithms and compute elasticities.

12We avoid using extreme percentiles at both ends such as the 1st or the 99th percentile as they are more
likely to suffer from measurement errors, top or bottom coding, and other issues.
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the 90-50 gap. The opposite pattern emerges at the left tail: a one percent increase in

the city size is associated with a 0.011-0.012 percent decrease in the 50-05 and 50-10 wage

gaps. Table A.5 in the appendix confirms that inequality measured toward the middle of

the distribution such as 90-10 and 75-25 gaps do not vary across city size, as suggested by

Figure 1.

Table 1: Left- and Right-tail inequality by City Size

LHS = Residual Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Private Ind. GDP) -0.012*** -0.011** 0.026*** 0.017***
(0.005) (0.005) (0.005) (0.004)

Average Years of Edu. 0.052*** 0.050*** -0.002 -0.010
(0.012) (0.012) (0.016) (0.012)

Race == White -0.424*** -0.408*** -0.277** -0.231**
(0.098) (0.103) (0.128) (0.099)

N 254 254 254 254
R-squared 0.520 0.571 0.566 0.597
State FE Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3), while controlling for the average years of education, share of
white population, and state dummies. Data for income inequality come from 5 percent sample in year 2000
compiled by IPUMS. Data for GDP come from BEA regional GDP estimates.

Baum-Snow and Pavan (2013) reports that the 50-to-10 wage ratios are higher in larger

cities (see Table 1 and Figure 2 in their paper). We find different results because we control

for city-level characteristics, while Baum-Snow and Pavan (2013) do not.13 We highlight the

differences in Table 2 by first estimating equation (3) without any city-level control, and

then progressively add back each control variable.

The first column of the table roughly replicates the findings in Baum-Snow and Pavan

(2013) with our sample: inequality is indeed higher in larger cities at the left tail without

any control at the city level.14 The rest of Table 2 shows that by adding back our control

13The individual level regressions and counter-factual experiments in Baum-Snow and Pavan (2013) (Table
2 to 5 in their paper), in which they control for education and age of individuals, are not comparable with
our estimations. Those tables study how 50-to-10 wage ratio at national level responds to the changes in
city size, whereas we study how 50-to-10 wage ratio within each city changes with city size.

14This also suggests that whether to include all male working population or restrict to only white males,
which is the main difference between our sample and sample in Baum-Snow and Pavan (2013), is not the
cause of our differences.
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Table 2: City Size and Wage Inequality, Effects of Education and Racial Composition

LHS = 50-10 Wage Gap

(1) (2) (3) (4) (5)

Ln(Private Ind. GDP) 0.010** 0.006 0.000 0.001 -0.011**
(0.005) (0.006) (0.007) (0.005) (0.005)

Average Years of Edu. 0.031*** 0.050***
(0.010) (0.012)

Share of White Population -0.299*** -0.408***
(0.113) (0.103)

N 254 254 254 254 254
R-squared 0.013 0.490 0.508 0.526 0.571
State FE No Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating Equation (3) by progressively adding more city-level controls. Data source:
IPUMS-USA, 2000.

variables, the size elasticity gradually decreases from 0.010 to -0.011. The control variables

at the city level indeed affect within-city inequality in addition to city size: cities with more

well-educated population tend to be more unequal at the left tail; the share of population

that reports as “white” seems to reduce inequality at both tails. The state in which the city

is located also matters, probably because minimum wage requirement varies from state to

state.15 As these variables probably affect inequality through channels such as institutional

quality and mostly are correlated with city size as well, controlling for them will help us to

single out the relationship between city size and inequality.

We also repeat the estimation of Equation 2 without any city-level controls and report

the results in the right panel of Figure 2. Without the control variables wage level at all

percentiles increases with city size, but those at the right tail see higher elasticity than those

to the left, and thus inequality measured across the entire distribution shall increase with

city size, a finding that resonates with Baum-Snow and Pavan (2013).

Autor and Dorn (2013) document the polarization of U.S. wage rates and argue that

automation in the manufacturing industry is the driver behind it. We show that similar

polarization can be observed in the size elasticity of wages, which suggests that the spatial

15We do not need to control for minimum wage at the city level since minimum wage within a state did not
vary in 2000. The first city-level minimum wage was implemented in 2004 (Santa Fe, NM and San Francisco,
CA) as documented in Schmitt and Rosnick (2011) and Vaghul and Zipperer (2016).
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(a) With City Level Control
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(b) No City-Level Control

Figure 2: City Size Elasticity of Wage at Different Percentiles

Note: This figure reports the city size elasticity of wage rate (β1) from Equation 2. The dashed line is
95 percent confidence interval. The left panel the a replication of Figure 1 for comparison. Data source:
IPUMS-USA, 2000.

agglomeration might have also contributed to the polarization of wage rates. Individuals at

the top and the bottom of the wage distribution benefit more from living in large cities than

the “middle-class.” As cities grow, agglomeration can directly contribute to the polarization

of wage rates in addition to the breakthroughs in the technology frontier.

We focus on percentile gaps as measures of inequality for a couple of reasons. Unlike

scalar measures such as the Gini or the Theil index, percentile gaps provide a complete and

flexible measure across the entire distribution. Higher 90-50 or 50-10 wage gaps can both

lead to higher Gini coefficient, but the economic mechanism and policy implications can

be different depending on whether higher inequality is driven by the movements at the left

or the right tail. In the debate on whether urban inequality in itself is a problem to be

concerned about, many authors such as Glaeser et al. (2008) pointed out that inequality is

not necessarily undesirable. This is because the congregation of entrepreneurs and highly-

skilled workers in large cities, which inevitably leads to higher inequality, is the precisely

the advantage of large cities. At the same time, many voices in the public debate that label

urban inequality as a “crisis” in American cities often attribute the undesirable outcomes

such as higher crime rates and lower educational attainments to urban inequality as well.

The debate on urban inequality would benefit from a clarification on what do we mean by
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“unequal.” The benefits of urban inequality based on the agglomeration mechanisms are

often linked to the right-tail inequality while many problems of inequality that are often

inter-mingled with the problem of poverty, shall be analyzed with a focus on the left-tail.

Our message that large cities are only more unequal on the right-tail has a clear policy

implication. Right-tail inequality in itself probably reflects the strength of large cities, and

it is not a problem that the policymakers shall try to “fix”. Expelling Google and Facebook

from San Francisco might lower the right-tail inequality, but it is probably not a desirable

policy for the majority of workers in the city. We also show that larger cities are more

equal on the left-tail. In addition to complementing the existing literature on inequality

which mainly focuses on right-tail measures, left-tail inequality in itself has distinct policy

implications. The pattern on the left-tail implies that the income of the bottom earners

drop fast as they move down the ladder of city size, and thus those in smaller cities are

more likely to fall below the poverty line. This echoes the findings in Jargowsky (2015),

which documents that concentrated poverty, a measure closely related to urban crime and

social mobility, grows most in smaller cities such as Syracuse (NY) and Dayton (OH) in

recent years. In the large cities such as New York City or Los Angeles, concentrated poverty

has been declining. Our finding implies that while the ghettos in NYC or LA receive the

most attention in the media, the policymakers at both the federal and the state level shall

focus more on the poor neighborhoods in small cities. Not only the problems of poverty and

left-tail inequality are more serious in smaller cities, the cities themselves probably lack the

resource to solve the problems on their own.

Robustness Checks All the figures and tables for robustness checks are included in the

appendix. Figure A.1 and Table A.1 report the robustness checks with two other measures of

city size, the total regional GDP and population. Table A.2 adds in industry and occupation

fixed effects in the Mincer equation (eq. 1) when computing the residual wage rates. Table

A.3 reports the results using unfiltered raw wage. All the results in the robustness checks are

qualitatively the same as those presented in the main text. Baum-Snow and Pavan (2013)

measure city size using population, and we use private GDP in the comparison exercise

reported in Table 2. Table A.4 repeats the same exercise with population as the measure of
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city size and the patterns remain the same as well.

2.3 Inter-Industry Wage Premium and Entrepreneurship Premium

In the rest of the section, we explore two potential channels that can potentially explain the

patterns of within-city inequality: industry and occupational wage premium. We first show

that both premiums vary systematically across cities in ways that are consistent with the

patterns of inequality; we then quantify their importance in explaining the observed pattern

of within-city inequality. These empirical patterns motivated the core mechanism of the

theoretical model presented in Section 3.

Inter-Industry Wage Premium The literature has comprehensively documented that

conditional on the observed individual characteristics, the residual wage varies substantially

across industries, and thus the so-called “inter-industry wage premium” exists (Rosen, 1987;

Krueger and Summers, 1988; Katz et al., 1989). We document that the inter-industry wage

premium varies systematically across cities: they are higher in larger cities, but the premium

in low-paying industries grows relatively faster with city size than the high-paying industries.

We first run the following regression to estimate the wage premium of each industry in

every city j separately:

ln
(
W j
i

)
= βj0 + βj1indi + βj2occi + βj3Xi + εji , j = 1, 2, · · · , J, (4)

where W j
i is the observed wage of individual i working in city j. indi is a vector of dummy

variables to indicate the industry in which the individual works. Our industry classification

comes from the 1990 census with 201 industries in the sample. We use “groceries” as the

benchmark industry since it is present in all the cities. occji is another vector of dummy

variables that control for the occupation of individual i.16 Xj
i is a vector that controls the

race, years of education, marital status, and age of the individual. We are interested in

the vector βj1 that measures the wage premium of each industry in city j relative to the

benchmark industry. The above equation is estimated separately for each city and thus no

16We use the 1990 census occupational classification.
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city fixed effects are needed.

We define the average premium of industry k as:

γ̄(k) =

∑N(k)
j=1 β̂j1(k)

N(k)
,

which is the average of the k-th element of β̂j1 across all theN(k) cities in which the industry is

present. We then use the following equation across the entire sample to study the relationship

between the average industry premium and city size:

ln
(
W j
i

)
= β0 + β1 ln(Y j) + β2 ln(Y j)× γ̄(k(i)) + β3Xi + indi + occi + εi, (5)

where Y j is the size of the city j in which individual i lives, k(i) is the industry in which the

individual works, and all the other variables are the same as defined above. The coefficient

of interest is β2, the interaction between industry wage premium and city size.

Table 3 reports the results. The first column reports the regression without the interaction

term and shows that across all the industries the wage premium is higher in larger cities, a

result commonly found in the literature. The second column adds in the interaction term and

shows that industries with higher average premium see their wage grow at a slower pace with

city size. A 10-percent increase in the city size leads to a 0.45 percent increase in premium

for industries at the 25th percentile wage premium and a 0.40 percent increase for industries

at the 75th percentile. In the next column, we add in the city fixed effects to absorb the city

size variable. The estimated relationship between the average industry premium and city

size remains significantly negative. The last two columns report regressions using a binary

definition of “high-premium industry”, which is defined as those industries with average

premium above the median of the distribution of γ̄(·). The results are still similar: the city

size elasticity of wage at high-premium industries is around 0.040, while the elasticity of the

low-premium industries is about 10 percent higher at 0.044. Table A.7 reports robustness

checks of the binary measure by defining “high-premium industry” based on the 25th or the

75th percentiles instead of the median, and we find similar results.

One potential explanation for the pattern documented above is the city specialization
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Table 3: City Size and Inter-Industry Wage Premium

LHS = Ln(Wage) Level Effect Continuous Measure Binary Measure

(1) (2) (3) (4) (5)

Ln(City Size) 0.042*** 0.043*** 0.044***
(0.000) (0.000) (0.001)

(Avg. Ind. Premium)

× Ln(City Size) -0.018*** -0.012***
(0.003) (0.003)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.004*** -0.003***
(0.001) (0.001)

Age 0.013*** 0.013*** 0.013*** 0.013*** 0.013***
(0.000) (0.000) (0.000) (0.000) (0.000)

Years of Edu. 0.049*** 0.049*** 0.047*** 0.049*** 0.048***
(0.000) (0.000) (0.000) (0.000) (0.000)

Married 0.194*** 0.194*** 0.197*** 0.194*** 0.198***
(0.001) (0.001) (0.001) (0.001) (0.001)

Race == White 0.128*** 0.127*** 0.132*** 0.128*** 0.133***
(0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,215,182 1,215,182 1,237,695 1,237,695
R-squared 0.422 0.423 0.431 0.422 0.430
Industry FE Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes
City FE No No Yes No Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of equation (5) with variations. The left-hand-side variable is the logarithm of observed
wage and “city size” is measured as private industry GDP. “Average Industry Premium” is a continuous
measure computed from estimating equation (4), and “High-Premium Industry Dummy” is the associated
binary measure in which the average premium is higher than the median. Data source: IPUMS-USA, 2000.

following the ideas of Henderson (1974). Certain industries are indeed concentrated in a

small number of cities. For example, “metal mining” and “shoe repair shops” only exist

in less than 50 cities, and 17 industries only in less than 100 cities. As a way to quantify

the impact of city specialization, we repeat our exercise while restricting the sample to the

industries that are present in more than 50, 100, or 200 cities. Table A.8 reports the results.

The magnitude of the estimates barely changes if we drop the highly concentrated industries

that only show up in less than 50 or 100 cities. The point estimates drop from -0.012 to

-0.005 (still significant) if we restrict the sample to industries present in more than 200 cities

for the continuous measure of industry premium, and similarly for the binary “high-paying”

industry dummy. This implies that specialization can indeed explain a sizable fraction of
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the observed differences in city-size elasticities of industry premium. The model proposed in

the paper does not feature specialization of cities, as all industries will be active in all cities.

In this sense, the differences in the point estimate between specialized and non-specialized

industries can be interpreted as a measure of the missing components of our model.

Table 4: City Size and Tradable Industry Wage Premium

LHS = Ln(Wage) Benchmark Def. Alternative Def.

(1) (2) (3) (4) (5) (6)

Tradable Ind. Dummy 0.064*** 0.074***
(0.001) (0.001)

Tradable Ind. Dummy
× Ln(City Size) -0.016*** -0.014*** -0.021*** -0.018***

(0.001) (0.001) (0.001) (0.001)
Ln(City Size) 0.043*** 0.050*** 0.043*** 0.049***

(0.000) (0.001) (0.000) (0.000)
Age 0.014*** 0.013*** 0.013*** 0.014*** 0.013*** 0.013***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Years of Edu. 0.054*** 0.049*** 0.047*** 0.054*** 0.049*** 0.048***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Married 0.204*** 0.194*** 0.198*** 0.204*** 0.194*** 0.198***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Race == White 0.132*** 0.128*** 0.133*** 0.133*** 0.128*** 0.133***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.405 0.422 0.431 0.405 0.423 0.431
Industry FE No Yes Yes No Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
City FE No No Yes No No Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of equation (5) with variations. “City size” is measured as private industry GDP.
“Benchmark” definition of tradable industries include agriculture, manufacturing and construction industries
in the 1990 industry classifications, and “alternative” definition classifies construction industries as non-
tradable. Data source: IPUMS-USA, 2000.

A similar pattern can also be observed between tradable and non-tradable industries as

well. We repeat the binary exercise above, replacing the “high-premium industry dummy”

with a tradable industry dummy and report the results in Table 4. In the “benchmark” defi-

nition of tradable industries, we classify all the agriculture, manufacturing, and construction

industries as tradable; in the “alternative” definition, we re-classify the construction industry

to a non-tradable industry.17 Similar to the results in Table 3, workers in tradable industries

17The benchmark classification of tradable industries include code 10 - 392 (excluding the agriculture
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enjoy a 6.4 to 7.4 percent wage premium, but the premium decays with city size: doubling

the city size reduces the tradable premium by around 1.4 and 1.8 percentage points.

Entrepreneurship Premium The entrepreneurship premium, on the other hand, in-

creases with the city size, and thus can potentially explain the widened income gap at the

right tail of the wage distribution. We follow the same binary estimation strategy outlined

in Equation (5) and estimate the following equation:

lnW j
i = β0 + β1Ei + β2 ln(Y j)× Ei + β3Xi + indi + cityi + εi, (6)

where i indexes individual, j indexes the city in which i lives, Y j is the size of city j, and Ei is

a binary variable that takes the value of 1 when the individual is defined as an entrepreneur.

We use two definitions of “entrepreneurship”. The benchmark defines “entrepreneur” as

executives or as managers of finance, marketing, human resources in the 1990 occupational

classification from the Bureau of Labor Statistics (see Table A.11 in the appendix for details).

We also use an alternative definition of entrepreneurship that only includes “chief executives”

as a robustness check. Similar to equation (5), indi and cityi are vectors of industry and

city fixed effects, and Xi is a vector that controls for individual characteristics. The key

parameter of interest is β2, the city size elasticity of entrepreneurship premium.

Table 5 reports the results. The first column omits the interaction term and reports

that entrepreneurs earn around 33 percent higher wage rate across all the cities. The second

column controls for the interaction term and shows that the entrepreneurship premium is

higher in larger cities: a 10-percent increase in the city size is associated with a 1.3 percent

increase in entrepreneurship premium. In the third column, we additionally control for

the occupational fixed effects which absorb the entrepreneurship dummy. The interaction

with city size remains significant and positive, and the elasticity increases from 0.013 in

the previous column to 0.021. The next three columns repeat the above exercise with the

alternative definition of entrepreneurship. All the results remain the same qualitatively.

In the next section, we present a general equilibrium model that can generate the three

patterns documented above with sorting of individuals across cities, industries, and occupa-

service industries 12, 20, and 30) and 500 - 561. The construction industry is code 60, “all constructions”.
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Table 5: U.S. Entrepreneurial Wage Premium and City Size.

LHS = Ln(Wage) Benchmark Def. Alternative Def.

(1) (2) (3) (4) (5) (6)

Entrepreneur Dummy 0.327*** 0.182*** 0.621*** 0.495***
(0.002) (0.014) (0.006) (0.049)

Entrepreneur Dummy
× Ln(City Size) 0.013*** 0.021*** 0.011** 0.023***

(0.001) (0.001) (0.004) (0.004)
Age 0.014*** 0.014*** 0.013*** 0.014*** 0.014*** 0.013***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Years of Edu. 0.068*** 0.068*** 0.047*** 0.073*** 0.073*** 0.048***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Married 0.227*** 0.227*** 0.198*** 0.236*** 0.236*** 0.198***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Race == White 0.169*** 0.169*** 0.132*** 0.179*** 0.179*** 0.132***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.391 0.391 0.431 0.384 0.384 0.430
Industry FE Yes Yes Yes Yes Yes Yes
Occupation FE No No Yes No No Yes
City FE Yes Yes Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. Results of
estimating Equation (6). The left-hand-side variable is the logarithm of observed wage and “city size” is
measured as private industry GDP. “Benchmark Def.” includes all the occupations listed in Table A.11 as
entrepreneurs, while “Alternative Def.” only includes the “Chief executives and public administrators” (the
3rd row). Data source: IPUMS-USA, 2000.
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tions.

Robustness Checks Table A.6, A.9, and A.10 report the robustness check using popu-

lation as the measure of city size for all main results. Table A.7 experiments with different

definitions of “high-premium industry”, and Table A.8 drops the industries that are concen-

trated in a few cities.

2.4 Quantifying the importance of the mechanisms

In this section we quantify the importance of the two potential channels that we have dis-

cussed above. We carry out two exercises to do so. In the first exercise, we control for

industry-city or occupation-city fixed effects when computing the residual wage to eliminate

the spatial variations along these two dimensions. In the second exercise, we only eliminate

the variance of inter-industry and entrepreneurship premiums across the cities. We repeat

the earlier exercise on the simulated data and study how within-city inequality changes.

2.4.1 Industry-City and Occupation-City Fixed Effects

The measures of inequality in the previous parts are based on the residual wage from esti-

mating equation 1. This equation does not control for the spatial variations of industry or

occupation fixed effects.18 To control for the spatial variation, we add in industry-by-city

fixed effects in the Mincer regression to explain the patterns on the left tail, and similarly,

occupation-by-city fixed effects to explain the right tail. In the validation exercise, instead

of the equation (1), we estimate:

ln(Wi) = β0 + β1 ·Xi + industry× cityi + εi. (7)

“industry× cityi” is a dummy variable to indicate the industry and city in which individual

i works, which allows the inter-industry wage premiums to vary across cities. We obtain

18Table A.2 reports the results that control for industry and occupation fixed effects, and the main results
persist. This indicates that industry or occupation premium alone is not enough to explain the observed
pattern of inequality. However, controlling for these fixed effects does not account for the spatial variations
of these premiums, and we show in this section that it is the spatial variation of the premium that drives
the the pattern of within-city inequality.
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the residual wage from this equation, repeat the exercise in Section 2, and report the results

of the left-tail inequality in the first two columns of Table 6. Once the industry-city fixed

effects are controlled for, larger cities no longer see lower inequality on the left-tail. Instead,

they are slightly more unequal than the smaller ones, a reversed pattern as compared to

benchmark results. This indicates that the variations of inter-industry wage premium across

cities are more than enough to explain the within-city inequality on the left.

Similarly, we estimate the following Mincer equation with occupation-city fixed effects:

ln(Wi) = β0 + β1 ·Xi + occupation× cityi + εi, (8)

and repeat the exercise with the residual from the estimation. The results are reported in

the last two columns in Table 6. Larger cities are still more unequal in the right-tail after

controlling occupation-city fixed effects. However, the relationship becomes muted. In our

benchmark results, the city size elasticity of the 95-50 gaps is 0.026; it drops by 27 percent to

0.019 in the counter-factual. Similarly, the size elasticity of the 90-50 gaps drop from 0.017 to

0.014. The variations in occupational premiums across cities can explain around one-third of

the right-tail inequality. Unlike the left tail, the residual wage rates at the right tail depend

more on unobservable individual characteristics and thus vary substantially more within a

city-occupation cell. The variations of residual wage rates within all entrepreneurs in New

York city are arguably larger than the variations across the residual wage rates janitors in

the same city. This implies that any model that tries to explain the pattern on the right tail

based on the observables will see their explanatory power dampened.

2.4.2 Eliminating Spatial Variance

In the second exercise, we only remove the differences in the second moment across cities,

instead of industry-city and occupation-city fixed effects that eliminates all the spatial vari-

ations. We first directly estimate the premiums across cities and then eliminate the spatial

variance of these premiums. We reconstruct the residual wage rates from the normalized

industry and entrepreneurship premiums and then repeat the exercise in Section 2. The

results are similar to the first set of counter-factual analysis.
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Table 6: Counterfactual Regressions

LHS = Residual Wage Ineq. Ind-Cty FE Filtered Occ-Cty FE Filtered

50-05 50-10 95-50 90-50

Ln(Private Ind. GDP) 0.016*** 0.015*** 0.019*** 0.014***
(0.005) (0.004) (0.005) (0.004)

Average Years of Edu. 0.026** 0.026** 0.023* 0.015
(0.012) (0.012) (0.014) (0.012)

Race == White -0.299*** -0.310*** -0.328*** -0.282***
(0.098) (0.096) (0.106) (0.101)

N 254 254 254 254
R-squared 0.591 0.646 0.543 0.582
State FE Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3). The measures of inequality are various percentile ratios of
hourly wage within an MSA. Different from the results in Table 1, the measures of inequality are computed
based on Eq 7 and 8 that control for industry-city or occupation-city fixed effects.

Inter-Industry Premium and the Left Tail Inequality We first compute a benchmark

measure of wage that allows for the spatial variations of industry wage premium. We define

the benchmark as the linear prediction based on the estimation of Equation (4):

ln
(
Ŵ j
i

)
= β̂j0 + β̂j1indi + β̂j2occi + β̂j3Xi, j = 1, 2, · · · , J,

where β̂j0, β̂j1, β̂j2, and β̂j3 are the OLS estimates of their counterparts in Equation (4). β̂j1

is the estimated industry wage premium in city j from the data, and its spread within city

varies across different cities. To construct the counterfactual wage premium, β̃j1, we eliminate

the spatial variations in the spread of β̂j1:

β̃j1 = σ̄
β̂j1

σ(β̂j1)
,

where σ(β̂j1) is the standard deviation of β̂j1 within city j, and σ̄ is a scaling factor.19 After

the transformation β̃j1 has the same standard deviation of σ̄ across all cities. We then proceed

19The size of σ̄ can be arbitrary. We define σ̄ as the average σ(β̂j
1) of the largest five cities. Changing σ̄

moves all the β̃j
1 proportionally and thus will not affect the results.
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to compute the counterfactual wage for each individual in our sample according to:

ln
(
W̃ j
i

)
= β̂j0 + β̃j1indi + β̂j2occi + β̂j3Xi, j = 1, 2, · · · , J,

The counterfactual W̃ j
i is the same as the benchmark Ŵ j

i with β̂j1 replaced by β̃j1.

We repeat the same exercise as in Section 2 using the benchmark wage Ŵ j
i and the

counterfactual wage W̃ j
i . We first compute residual wage inequality within each city and

then estimate Equation (3) to study how within-city inequality varies across cities. The

results are reported in the first panel of Table 7.

When we shut down the spatial variations of inter-industry wage premium, the negative

relationship between city size and inequality measured at the left tail weakens significantly.

The first two columns report the estimation of Equation (3) based on the benchmark Ŵ j
i

and the next two columns report the results based on the counterfactual W̃ j
i . The size

elasticity of 50-05 and 50-10 wage gap is -0.068 and -0.045 in the benchmark case and drops

to -0.040 and -0.022 in counter-factual case, respectively. This suggests that around half of

the spatial variations of left-tail inequality reported in Section 2 can be explained by the

two proposed mechanisms. Not surprisingly, the point estimates in the counterfactual case

do not go to zero, suggesting that there exist other mechanisms in the data that can also

explain the observed pattern. For example, Table A.8 in Section reports that the composition

of industries across cities can potentially explain some of the observed variations in inter-

industry wage premium, and thus can conceivably explain the left-tail inequality as well.

Introducing the specialization of cities is beyond the scope of the current paper, and it could

be a fruitful direction for future work.

Entrepreneurship Premium and the Right Tail Inequality To quantify the im-

portance of entrepreneurship mechanism, we perform a similar counter-factual analysis by

shutting down the spatial variations of entrepreneurship premium and then re-measure the

right-tail inequality.

We start by computing the benchmark wage using the linear predictions similar to the
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Table 7: Benchmark and Counterfactual Regressions

(a) Left Tail

Baseline Counter-Factual

50-05 50-10 50-05 50-10

Ln(Private Ind. GDP) -0.068*** -0.045*** -0.040*** -0.022***
(0.005) (0.004) (0.005) (0.003)

Average Years of Edu. 0.050*** 0.036*** 0.036*** 0.022***
(0.010) (0.009) (0.010) (0.008)

Share of White Population -0.314*** -0.217*** -0.242** -0.182**
(0.095) (0.077) (0.104) (0.077)

N 254 254 254 254
R-squared 0.554 0.470 0.392 0.374
State FE Yes Yes Yes Yes

Robust standard errors reported in parentheses
* p<0.10, ** p<0.05, *** p<0.01

(b) Right Tail

Baseline Counter-Factual

95-50 90-50 95-50 90-50

Ln(Private Ind. GDP) 0.014*** 0.016*** 0.010*** 0.013***
(0.004) (0.004) (0.003) (0.004)

Average Years of Edu. -0.020** -0.032*** 0.000 -0.019*
(0.009) (0.011) (0.007) (0.010)

Share of White Population -0.035 -0.205*** -0.039 -0.205***
(0.075) (0.068) (0.043) (0.071)

N 254 254 254 254
R-squared 0.130 0.512 0.104 0.488
State FE Yes Yes Yes Yes

Robust standard errors reported in parentheses
* p<0.10, ** p<0.05, *** p<0.01

.

Note: The first panel of the table reports the estimation of Equation (3) with the benchmark Ŵ j
i and the

counterfactual W̃ j
i instead of the data on the left tail. The second panel of the table reports the same

estimation with right-tail inequality. All the other control variables are omitted in the tables. For more
details, see the main text in Section 2 and 2.4

one from the previous section for each city separately:

ln Ŵ j
i = β̂j0 + β̂j1Ei + β̂j2Xi + β̂j3indi, j = 1, 2, 3, · · · J,

where the coefficients with hats are the estimates based on OLS and the Ŵ j
i is the predicted
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baseline income. We eliminate the spatial variation of β̂j1 across cities by taking the national

average:

β̃1 =

∑J
j=1 β̂

j
1

J
,

and compute the counter-factual wage W̃ j
i as:

ln W̃ j
i = β̂j0 + β̃j1Ei + β̂j2Xi + β̂j3indi, j = 1, 2, 3, · · · J.

Again, the only difference between Ŵ j
i and W̃ j

i is the coefficient on the entrepreneur dummy.

We then proceed to compute the right-tail inequality following the methods in the earlier

parts of Section 2 and report the results in the second panel of Table 7. Using the benchmark

predicted wage rates, the city size elasticity of the 95-50 and the 90-50 wage gaps is 0.014 and

0.016, and they drop to 0.010 and 0.013 respectively once we eliminate the spatial variations

of entrepreneurship. It implies that between 18.8 and 28.6 percent of the observed variation

on the right tail can be explained by the entrepreneurship premiums. The share explained

by entrepreneurship premium is smaller as compared to the left tail because entrepreneurs

only constitute a tiny fraction of the top 5 to 10 percent of the wage distribution. It is

possible that workers within the top wage percentiles also earn higher premiums in larger

cities, similar to the entrepreneurs. Nevertheless, the spatial variations of entrepreneurship

premium are still responsible for a sizable part of the right-tail inequality.

3 Model

3.1 General Environment

The economy is geographically divided into J ≥ 1 cities populated by a unit mass of indi-

viduals. Individuals are heterogeneous in their innate human capital endowments, x, which

follows a continuous distribution with support on R+ and the cumulative distribution func-

tion G(x). x includes individual characteristics that are both observable and unobservable to

an outside econometrician, but x is perfectly observable to all individuals inside the model.
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Individuals can freely choose which city to live in subject to no cost of migration. Within

each city, individuals choose between two sectors, namely, high-entry-cost and low-entry-cost

sector (thereafter referred as H and L sectors). H sectors are those that require certain certi-

fication or education to enter, such as manufacturing industries; L sectors are those with no

entry barriers, such as low-end jobs in retailing and other service industries. In the model,

individuals need to pay an entry cost S > 0 in unit of final consumption goods in order to

work in the H industry.20

H Sector Individuals can choose between two occupations — entrepreneurs or workers —

in the H sector following the occupational choice model in Lucas (1978). The market struc-

ture in the H sector is monopolistic competitive with differentiated products. To produce

in the H sector, individuals need to first organize into firms. Any individual can choose to

create a new firm, hire workers, and start production of a new variety. With a slight abuse of

notation, we use x, the human capital of the entrepreneur, to index the variety she produces.

The firm created by the entrepreneur with human capital level x in city j has the following

production function:

Qj(x) = b(x̄j)ψ(x)(`− f),

where ` denotes efficiency labor input. ψ(x) is a strictly increasing and convex function

that maps the human capital of the entrepreneur to the firm productivity. We assume

ψ(0) = 0, limx→∞ ψ(x) = ∞, ψ(x) > 0, ψ′(x) > 0, and ψ′′(x) > 0 for all x. f is the

fixed cost of production in units of efficiency labor that is constant across cities and firms.

The assumption of ψ(0) = 0 and f > 0 together imply that the individuals with x = 0

will never choose to be an entrepreneur in equilibrium. b(x̄j) summarizes the city-level

productivity. It is an increasing function of x̄j, the average level of entrepreneur talent in city

j, captures the overall productivity in city j. The inter-linkage between the location-specific

productivity and the average level of entrepreneurial talent is common in the literature

of urban and economic geography. For example, it can be micro-founded in a model with

20The unit of S is not crucial for our results. If S is denoted in utility terms, or the unit of numeraire, all
of our propositions later in the next section will still hold.
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positive knowledge spillovers or return to face-to-face meetings. In this paper, we are abstract

away from this micro-foundation by assuming the positive linkage, and study its impacts on

within-city inequality. The income of the entrepreneur equals to the profit of the firm she

owns.21

Individuals can also choose to work for an existing firm in the H sector. In this case, 1

unit of human capital directly translates into 1 unit of efficiency labor supply, and the income

of a worker with human capital x is thus wjx, where wj is the wage rate per efficiency unit

of labor in city j.

The above two assumptions are crucial in generating the patterns of inequality at the

right tail: 1) entrepreneurs wage increases with firm size, and 2) workers’ wage is not directly

linked to the firm they work for. Both assumptions are broadly supported on the empirical

findings in the literature. The literature on executive compensation has documented that

the income of the top executives is proportional to a power function of the size of the firm she

manages — a relationship also known as the “Roberts’ law” (Roberts, 1956; Murphy, 1999).

The positive correlation between entrepreneurial compensation and firm size is also rooted in

many models of CEO pay, as long as in equilibrium the model sustains assortative matching

between entrepreneurs and firms, such as in Gabaix and Landier (2008). We abstract away

from most of the details of an executive compensation model and directly assumes equilibrium

assortative matching as in Ma and Ruzic (2015) by linking the productivity of the firm with

the human capital of the founder. For simplicity of exposition, we also assume the easiest

form of the power function, the identity mapping, in our benchmark model.

In comparison to the executive compensation, the link between firm size and the average

wage rates of workers appears to be much weaker. Researchers have indeed documented the

existence of positive firm-size-premium for workers as well (Oi and Idson, 1999). However,

once individual characteristics have been controlled for, the size-premium usually shrinks

significantly. For example, Abowd et al. (1999) document that individual effects explain

21We assume that there is only one entrepreneur per firm in the model. This implies that only a small
fraction of the working population see their wage rate increases with the size of the firm. This assumption
is not critical for the theoretical results in the paper. The mechanism can be easily extended beyond the
dichotomy between entrepreneurship and workers. In addition to entrepreneurs, a worker in any occupation
or profession whose wage rate rises with the size of the firm shall benefit more from working in large cities.
One can also directly scale up the measure of entrepreneurs per firm to account for multiple managers within
the firm for quantitative purposes without affecting the main results of the paper.
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about 75 percent of the firm-size wage effect, while firm effects explain relatively little. In

our model, the wage rate wj is not the observed wage rate in the data but the residual wage

rate net of individual characteristics. For this reason, we assume it to be independent of

firm sizes, and only determined in the local labor markets in a city.

The above two assumptions can be relaxed along several dimensions without affecting

the main results (Proposition 2). The compensation function for entrepreneurs can be a

power function or any function that is regularly-varying. We can also allow for positive

firm-size elasticities of workers as well. As long as the firm-size elasticity of entrepreneurs is

higher than that of the workers — a simple assumption backed by most empirical studies on

manager-to-worker pay ratios — our results survive.

Trade Goods in the H sector can be traded across cities frictions. To export from city k

to city j, firms need to incur iceberg trade costs so that in order to sell one unit of goods to

market j, the firm in city k needs to ship out τjk > 1 units of goods. We denote the price of

variety x produced in city k and sold in city j as pjk(x).

L Sector L goods are homogeneous and non-tradable across cities. The market is perfectly

competitive. Individuals can produce without organizing into firms, which imply that no

occupation choice problem exists in the L sector. Production function in L sector is linear

in labor supply, and 1 unit of labor input leads to 1 unit of output. Denote the price of L

goods in city j as zj. The income of an individual in the L sector with human capital x in

city j is thus zj × x.

Preference Individuals in city j gain utilities from the consumption of final goods, which

is an aggregation of all the goods available in the city they reside in:

yj =

[∫
i∈Ωj

q(i)
σ−1
σ di

α

] σα
σ−1 [

Λj

1− α

]1−α

where Λj is the consumption of L goods; q(i) is the consumption of variety i of H goods, Ωj

is the set of available H goods in city j. α denotes the expenditure share of H goods, and

σ > 2 is the elasticity of substitution between varieties.
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Individual’s utility function is linear in the consumption of final goods, and decreasing

with congestion dis-utility. It is simply:

V = yj − C(Nj),

if the individual works in the L sector, and

V = yj − C(Nj)− S,

if the individual works in the H sector. C(Nj) captures congestion dis-utilities, which pos-

itively depends on the population of city j. We assume that C ′(·) > 0 and C ′′(·) > 0 so

larger cities exert higher congestion dis-utility and the cost function is convex. Appendix

C provides an extension of our model in which the congestion disutility is micro-founded in

a model with the provision of public goods. In the benchmark model, we directly use the

reduced functional from the extended model for the sake of simplicity.

4 Analytical Results

This section discusses the analytical results. We first define the equilibrium and the ter-

minology that will be used throughout this section, and then proceed to characterize the

central pattern of an asymmetric equilibrium: the assortative matching between individuals

and location-industry choices. Based on the assortative matching, we show how within-city

inequality vary across cities in the equilibrium. In the last part, we deal with the issue of

multiple equilibrium, and provide conditions under which a unique equilibrium will emerge.

Appendix D provides all the formal proofs, and we only discuss the intuition or the sketch

of the proof in the main text.

4.1 Definition and Notation

We define a spatial equilibrium as a mapping from individual’s human capital x to its

corresponding location, industry, occupation and consumption choices, and a series of prices
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{wk, zk, pkj(x)} such that:

1. Given the prices, each individual maximizes her utility by choosing the occupation,

industry, location, and consumption bundle; each firm maximizes its profits.

2. H and L goods markets clear in each city and labor market clears in each city and

sector.22

3. All cities are populated.

The potential equilibria can be either symmetric or asymmetric. As the cities are ex-ante

identical, a symmetric equilibrium in which all the cities are identical in population, price,

and sectoral composition always exists. However, throughout this paper, we are interested

in the asymmetric equilibrium, where cities can be ex-post heterogeneous.

Before we delve into the analytical results, we first define the variables and notations that

will be used in the rest of the section. The set of potential location choices is k ∈ {1, 2, · · · , J}
and the set of occupation choices is ω ∈ {E,H,L}, where E stands for the entrepreneur in the

H sector, H and L stands for the worker in the H and L sectors, respectively. The individuals

choose a location-sector combination in the the space that consists of 3J elements, and we

refer the duplet (k, ω) as a “choice” of the individual.

The indirect utility function of individual x making the choice (k, ω) can be written as:

V ω
k (x) = Aωk · φω(x)−Bω

k ,

where Aωk is the return to human capital, Bω
k is the costs of choosing (k, ω), and φω(x)

is an occupation-specific function of human capital. For example, if x chooses to be an

22The market clearing condition in the H sector implies that trade must be balanced in each city. Com-
bined with the non-tradability of the L sector, this implies that in equilibrium cities are not specialized in
the sense that every single city must host both H and L sectors. This does not contradict the empirical
pattern documented in Table A.8, in which many cities only host a selection of industries. The empirical
pattern is based on a detailed classification of 201 industries, while in our model we adopt a broad definition
of 2 industries. Whether we interpret the two industries as tradable/non-tradable or as high/low-paying
industries, every city in the data host both types of the broadly-defined industries. However, as is shown in
the empirical section, specialization of cities can indeed explain a sizable proportion of the observed varia-
tions of inter-industry wage premium across cities. We prioritize the simplicity of the model over empirical
explanatory power in this paper and leave the extension of specialized industries to future works.
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entrepreneur in city k, then:

V E
k (x) =

πk

Pα
k z

1−α
k︸ ︷︷ ︸

AEk

(ψ(x))(σ−1)︸ ︷︷ ︸
φE(x)

−
[
C(Nk) + S + f · wk

Pα
k z

1−α
k

]
︸ ︷︷ ︸

BEk

,

πk =
1

σ

J∑
j=1

[
αRjP

σ−1
j

(
σ

σ − 1

τjkwk
bk

)1−σ
]
.

The return to the choice, AEk depends on the profit that can be generated, πk, and the ideal

price index Pα
k z

1−α
k .23 The barrier to (k,E) depends on the location-specific congestion, as

well as the barrier into the industry, S, and the fixed costs of starting a firm in the units of

utility, f wk
Pαk z

1−α
k

.24

Similarly, the indirect utility functions for workers in the H or the L sector are, respec-

tively:

V H
k (x) =

wk

Pα
k z

1−α
k︸ ︷︷ ︸

AHk

·x− [S + C(Nk)]︸ ︷︷ ︸
BHk

,

V L
k (x) =

zk

Pα
k z

1−α
k︸ ︷︷ ︸

ALk

·x− C(Nk)︸ ︷︷ ︸
BLk

.

In the case of the workers, φH(x) = φL(x) = x.

Lastly, we denote the set of individuals with human capital x that optimally choose (k, ω)

in an equilibrium as the set ωk ⊂ R+:

ωk =

{
x ∈ R+ : V ω

k (x) ≥ max
k′={1,2..J}

[
max

ω′={E,H,L}
V ω′
k′ (x)

]}
. (9)

For example, the set of x that chooses to be entrepreneurs in city k is denoted as Ek, and

23In this section, we denote the city-level productivity, b(x̄k) simply as bk, and treat the variable as
exogenously fixed. As individuals are atomistic in the model, they do not internalize their impact on the
average entrepreneur talents in the city. As Corollary 1 shows, the sorting of the entrepreneurs in equilibrium
indeed exhibit assortative matching when b(x̄k) is taken as given. This implies that bk is larger in larger
cities, which is consistent with the prediction that both AE

k and BE
k are larger in larger cities.

24The fixed costs of starting a firm, f ·wk, needs to be converted into utility terms, and therefore the ideal
price index in the denominator.
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for workers in the H and L sectors, as Hk and Lk. In any asymmetric equilibrium, we must

have a positive measure of individuals in all city-sector-occupation cells, so ωk 6= ∅,∀ω, k.

4.2 Assortative Matching between Individuals and Choices

In this part, we first establish the assortative matching rule: individuals with higher x will

be sorted into a choice (k, ω) that is more costly to enter. We then discuss the implications

of assortative matching within each city and occupation. Our starting point is a lemma that

will be used throughout the proofs: all the indirect utility functions only intersect at most

once on R+:

Lemma 1. For all k, k′ ∈ 1, 2, · · · , J and ω, ω′ ∈ {E,H,L}, there exists one and only one

x ∈ R+ such that V ω
k (x) = V ω′

k′ (x).

The single-crossing property simplifies the characterization of the equilibrium as it allows

us to infer an individual’s preference between two choices regardless of the monotonicity of

g(x) = V ω
k (x) − V ω′

k′ (x). In the general case of non-monotonic g(x), the Lemma above

allows us to infer the sign of g(x) by computing the sign of g(0) and limx→∞ g(x), which

is straightforward to do in many cases without explicitly specifying the functional forms in

the model. With the help of the single-crossing property, we can prove our main result of

assortative matching:

Proposition 1. Suppose there are two choices, (k, ω) and (k′, ω′). If x′ ∈ ω′k′, then x′ >

sup(ωk) if and only if Bω′
k′ > Bω

k .

Intuitively, the proposition states that more talented individuals will enter the cells with

higher barriers. The proof is provided in the appendix, and we only discuss the sketch in

the main text. Note that the difference between the two choices, g(x) = V ω′
k′ (x) − V ω

k (x),

evaluated at x = 0 is simply g(0) = Bω
k − Bω′

k′ . If Bω′
k′ < Bω

k , then we can infer g(0) > 0.

For any x ∈ ωk, we must have g(x) < 0 by revealed preference, and by the same logic, we

must have g(x′) > 0. However, as 0 < x < x′ and g(x) switches signs twice in the interval

(0, x′), the continuity of g(x) implies that there exists at least two values of x1, x2 ∈ (0, x′)

such that g(x1) = g(x2) = 0. This contradicts with the single crossing property as stated in

Lemma 1.
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Proposition 1 is a useful result as it allows us to match individuals to choices by human

capital and the entry barrier, Bω
k . The assortative matching is an equilibrium result, and

thus it takes all endogenous responses in general equilibrium, such as factor and output

prices, as well as the distribution of population across space, into consideration, which in

turn facilitates the characterization of the equilibrium without solving the model entirely.

The direct implication of the above proposition is that assortative matching shall arise

along both the location and the industry dimension in our model. Our next corollary states

that within a city, individuals sort across industries and occupations by talent and desirabil-

ity; similarly, within an industry/occupation, individuals sort by talent and city size:

Corollary 1. In any asymmetric equilibrium:

(i) Within city k, individuals sort into occupations by entry barrier: inf Ek ≥ supHk, and

inf Hk ≥ supLk.

(ii) Within each industry/sector ω, individuals sort by city size. If Nk′ > Nk, then 1)

inf Ek′ ≥ supEk, 2) inf Hk′ ≥ supHk, and 3) inf Lk′ ≥ supLk.

(iii) There exists a cutoff xE such that individuals choose to be an entrepreneur in some

city k if and only if x ≥ xE.

We provide a sketch of the proof using the sorting of the entry barriers. Within each city k,

all the occupations face the same congestion disutility; the entry barrier into entrepreneurship

is the highest at BE
k = C(Nk) + S + f wk

Pαk z
1−α
k

, followed by the workers in the H sector,

BH
k = C(Nk) +S. The workers in the L sector do not face additional barriers other than the

congestion disutility, so that BL
k = C(Nk). Proposition 1 implies that within the same city,

the individuals with higher x sort into industry-occupation cells with higher entry barrier,

and thus the within-city assortative matching.

Part (ii) of the proposition characterizes the assortative matching across city. Cities with

higher population also have higher C(Nk), and therefore attract individuals with higher

human capital. For example, workers in the H sector face the entry barrier of C(Nk) + S,

and thus individuals with higher human capital must be working in a larger city as implied by

Proposition 1. The same logic applies to the workers in the L sector. For the entrepreneurs,
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the sorting of the entry barrier is less obvious as we would need cities with higher Nk to have

higher wk
Pαk z

1−α
k

as well to ensure the assortative matching. Comparing the workers in the H

sectors across cities, the cities with higher BH
k = S + C(Nk) must also have higher return

to human capital, AHk = wk
Pαk z

1−α
k

, otherwise the choice with higher barriers and lower return

will be empty in equilibrium. From the entrepreneurs’ perspective, this implies that workers

are more expensive, and thus the fixed costs of entry are higher in larger cities as well. This

implies that C(Nk) + f wk
Pαk z

1−α
k

must also be higher in larger cities.25

The third part of the Proposition 1 states that all the individuals with human capital

above a certain threshold will choose to be entrepreneurs in some city. The grouping of the

entrepreneurs at the top of the human capital distribution is driven by the differences in

φω(x) function: while human capital translates into efficiency labor linearly in the case of

workers, it adopts a convex functional form for entrepreneurs, and thus ensuring the cut-

off. Combining this result with part (ii) of the same proposition, we can further infer that

the union of x of all the entrepreneurs, ∪Jk=1Ek, is always a connected set on the real line

above xE. Without the loss of generality, we define the city that host the most talented

entrepreneurs as city 1, followed by the next group of most-talented entrepreneurs in city

2, and so on and so forth: N1 > N2 > N3, · · · > NJ . The mechanism behind the sorting is

the trade-off between the human capital spillovers and competitiveness, which is consistent

with the findings in the literature such as Glaeser et al. (2005) and Behrens et al. (2014).

On the one hand, any entrepreneur prefers to work in the same city with highly-talented

entrepreneurs due to the benefits of knowledge spillover. On the other hand, cities populated

with talented entrepreneurs are also highly competitive: wage rates are high and the ideal

price index low, which makes the city hard for the less-talented ones to survive. In addition,

25This sorting across implies that individuals with higher human capital are more likely to live in large
cities, and the average level of human capital is higher in larger cities. These two predictions are strongly
supported in the data: in our sample, individuals with college and above degrees are 44 - 53 percent more
likely to live in cities with above-median GDP and similarly, the individuals in larger-than-median cities
on average have 5.3 percent more years of education.Both statements are based on the sample in Section
2. The first statement is the result of the individual-level Logit regressions while controlling for individual
age, marital status, and race; the second statement is based on a city-level OLS regression that controls for
state dummies. Table A.12 in the appendix provides the detailed specification and results. Note that despite
the positive correlation between city size and average level of human capital, the model-consistent way of
estimating equation 3 still require both variables on the right hand side. This is because in equilibrium, the
relationship between the two variables are neither linear nor log-linear, as shown in appendix E in a two-city
case. Excluding the average human capital in Equation 3 leads to the omitted variable bias.
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cities with better entrepreneurs are also larger, and thus post higher congestion dis-utility.26

In equilibrium, the trade-off between the benefits and costs of “better neighbors” pins down

the sorting of entrepreneurs. In comparison, ∪Jk=1Hk and ∪Jk=1Lk might not be connected

sets and this leads to the issue of multiple equilibrium, which we will discuss at the last part

of the section.

The above predictions on assortative matching do not depend on the initial distribution

of population over cities, as we do not have migration frictions in the model. In general, when

migration is costly, the equilibrium sorting pattern will depend on the initial distribution and

the migration costs. Nevertheless, conditional on a specific location-industry cell, our model

still predicts that individuals with higher human capital endowment will tend to migrate to

larger cities or higher-barrier occupations.

Another implication of assortative matching is the advantage of the large cities often

documented in the literature (Combes et al., 2012a; Rosenthal and Strange, 2004; Davis and

Dingel, 2012; Combes et al., 2008). In the next corollary, we show that these patterns also

arise in our model due to assortative matching: cities with larger population also have higher

real GDP, consumption-equivalent utility, and real wage rates in all industry-occupation cells.

Corollary 2. In any sorting equilibrium, if Nk′ > Nk, then:

(i) The real wage of H workers is higher in city k′: wk′
Pα
k′z

1−α
k′

> wk
Pαk z

1−α
k

.

(ii) The real wage rates of workers in both sectors measured in term of H goods are higher

in city k′: wk′
Pk′

> wk
Pk

, and
zk′
Pk′

> zk
Pk

.

(iii) The return to entrepreneurship is higher in k′: πk′
Pk′

> πk
Pk

.

(iv) Real GDP in city k′ is higher:
Rk′

Pα
k′z

1−α
k′

> Rk
Pαk z

1−α
k

.

4.3 Within-City Inequality

We have described the assortative matching patterns in the equilibrium in the above section.

In this section, we proceed to characterize the key result of the model, the within-city

26Our results do not imply that larger cities have higher or lower concentration of entrepreneurs, either
in terms of absolute numbers or as a share of the population. Behrens et al. (forthcoming) provide a more
detailed discussion on the indeterminacy of entrepreneurship concentrations across cities.
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inequality:

Proposition 2. In any sorting equilibrium, if Nk′ > Nk, then :

(i) the wage ratio between H and L sectors is lower in city k′: wk
zk
>

wk′
zk′

.

(ii) the average ratio of profit per unit of efficiency labor supply to wage is higher in city j:

1

G(x ∈ Ek′)

∫
x∈Ek′

(
πk′(ψ(x))(σ−1)/x

wk′

)
dG(x) >

1

G(x ∈ Ek)

∫
x∈Ek

(
πk(ψ(x))(σ−1)/x

wk

)
dG(x).

Proposition 2 is the main theoretical result. It states that entrepreneur’s wage to H

worker’s wage ratio, which is the counterpart of the top-to-median wage ratio in the data,

is increasing in city size; and the wage inequality measured at the left-tail — the wage gap

between workers in the H and L — is decreasing with city size.

The first part of the proposition states that the wage gap measured at the right-tail

of the distribution — the gap between the entrepreneurs and workers in the H sectors —

widens in larger cities. We measure the wage rate of the entrepreneurs as their total income,

πk(·), divided by the level of their human capital x, which is the direct counter-part of wage

rate per efficiency labor supply for the workers, wk. The entrepreneur’s income equals the

profit of the firm, which is proportional to the sales of the firm. In light of this, the above

proposition is the immediate implication that the average firm size increases faster with

respect to city size relatively to wage rate in our model. Researchers have documented that

both the average wage rate and the firm size increase with city size. However, the elasticity

of city-size against average firm size is estimated to be much higher than against the average

wage rate. For example, the city-size elasticity of firm employment is found to be around 0.5

for entering firms (Glaeser and Kerr, 2009), and around 0.7 for all firms in the U.S. (Glaeser,

2007). In contrast, the city-size elasticity of wage rate or earnings is significantly lower:

around 0.046 in the U.S. earning data27, 0.05 in the French data (Combes et al., 2008), and

0.1 in Japanese data (Tabuchi and Yoshida, 2000)28.

27Roback (1982) reports that the coefficient on population of 98 cities is around 0.16E-7, and the average
population in her sample is 2,866,958. This implies that the average size elasticity is around 0.046.

28Both Glaeser and Mare (2001) and Baum-Snow and Pavan (2012) report the city-size premium using
dummy variables instead of elasticities, and thus their results are not directly comparable with those reported
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Our results on the right tail are also consistent with the findings in the literature that skill

premium is higher in larger cities (Davis and Dingel, 2012, 2014; Behrens and Robert-Nicoud,

2015). In the literature, the spatial variations of skill premium usually stem from mechanisms

such as knowledge exchange, spatial sorting of individuals, or the uneven distribution of

amenities. In our context, the skill premium refers to the premium of entrepreneurial skills

v.s. labor in the H sector. The spatial variations of the entrepreneurial skill premium are

rooted in the fact that larger cities host larger firms in equilibrium as stated in Corollary

1. As a result, the return to entrepreneurs’ human capital is positively correlated with firm

size, whereas the return to workers’ is independent of it. This further implies that in the

equilibrium, the difference in the rate of return to human capital between entrepreneurs and

workers is higher in larger cities.

Our model can also shed light on the relationship between skilled-biased technological

changes and the widening within-city income gap over time. Baum-Snow and Pavan (2013)

document that within-city inequality was relatively constant across cities in the 1980s and

larger cities only started to be more unequal in the recent decades. Through the lens of

our model, one potential explanation is the advancements in information technology that

expand the span of control of high-skilled individuals, allowing them to create larger firms in

equilibrium. In our model, the effects of skill-biased technological change can be embedded

in the functional form of b(x̄), the knowledge spillover effects. Over time, if the b(·) function

becomes steeper due to technological changes, entrepreneurs with the same x will be able to

create larger firms. This implies higher within-city inequality, especially on the right-tail in

later years.

The second part of the proposition is a statement on the wage ratios between workers in

different industries, the w/z ratio. It shows that in our model: the relative wage premium

of working in the high-paying industry decreases with the size of the city. In other words,

the residual wage rate in low-paying sector must increase with city size at a faster speed,

and therefore the wage inequality measured at the left-tail of the distribution, such as the

in Glaeser (2007) and Glaeser and Kerr (2009). Baum-Snow and Pavan (2012) report that the wage premium
between large (with more than 1.5 million population) and small (with smaller than 0.25 million population)
is at most 0.29. This roughly translates into an upper bound of the elasticity as (0.29/(1.5/0.25)) ≈ 0.0483,
which is in line with the other estimates. Similar results can also be obtained in Glaeser and Mare (2001).
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Figure 3: City Size Elasticity of Residual Wage in the Model

Note: this figure plots the implications of Proposition 2 and 2. We do not take a stand on whether the size
elasticity of entrepreneurship is higher or lower than that of the workers in the L sector.

median-to-bottom wage ratios, shall be smaller in larger cities.

Two forces drive this result. The first is the existence of the fixed cost of entry into the

H sector. Intuitively, when individuals are choosing between working in the H and L sector

within a city, the choice boils down to the trade-off between the income premium of working

in the H sector, (w − z)x, against the cost of entry, S. Since the average human capital is

higher in larger cities, w−z must be smaller in larger cities. Otherwise, the marginal worker

between the L and H sector in large cities will always switch to the H sector, a situation that

cannot arise in equilibrium. In other words, the market must compensate those working in

L sectors relatively more in the large cities, otherwise, individuals will deviate from their

equilibrium choice of location and industry. This channel is similar to the ideas in Roback

(1982), in which the differences in housing market drive the pattern of wage inequality at

the left tail in large cities. The second driving force z/P increases with the size of the city

as stated in Proposition 2. This means the output price of L goods rises faster than that of

the tradable H goods as the size of the city grows. The differences in output prices translate

into the differences in factor prices, z/w, and as a result, w/z decreases with the size of the

city.

The above two predictions are statements on the city-size elasticity of wage rates. Propo-

sition 2 states that the city-size elasticity of wage rates are all positive, and Proposition 2

further predicts that wage rates differ in city-size elasticities. The city-size elasticity of en-
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trepreneur compensation shall be higher than that of the workers’ wage, and the city-size

elasticity of wages in low-paying and non-tradable industries shall be higher than that of the

wages in high-paying and tradable industries. We illustrate these predictions in Figure 3.

The predicted pattern echoes the U-shaped pattern in Figure 1 in the introduction, and the

predictions are also supported in data as shown in Section 2. These two propositions also

imply that across cities, we shall expect the wage gap between the top earners in different

cities to widen up, and the gap between median earners to narrow down, a finding similar

to Giannone (2017).

Our results are based on the assumption that within a city, all the individuals face the

same price index. In reality, this is not necessarily true: individuals with higher levels

of education and income might choose more expensive housing and consumption bundles.

Allowing for within-city variations of price index distorts our predictions on both tails asym-

metrically. On the right-tail, it implies that the real wage inequality shall grow slower than

what our model predicts, since the high-income individuals (entrepreneurs) might also face

higher price index in larger cities, a finding similar to Moretti (2013). On the left tail, it

implies that the real wage inequality between the median and the bottom earners might

be wider than what our model predicts. Workers in the H sectors will not only experience

slower growth in nominal wage rate but also suffer a higher price index as compared to the

workers in the L sectors in large cities.

4.4 Multiple Sorting Patterns and Conditions for Uniqueness

In the previous parts, we have characterized the sorting and the within-city inequality in

equilibrium. One remaining issue is the multiplicity of equilibria in our model. Models of

economic geography often suffer the problem of multiple equilibria, and our model is no

exception. In this section, we provide conditions under which a unique equilibrium exists.

The assortative matching pattern described in Proposition 1 cannot pin down a unique

sorting pattern across all the (k, ω). Multiple sorting patterns could emerge among the

workers because unlike the entrepreneurs, the union sets of the workers, ∪Jk=1Hk or ∪Jk=1Lk,

might not be a connected set on the real line. For example, two potential sorting patterns

may arise in the case of two cities as illustrated in Figure 4. In the example, Proposition 1
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indicates that E1 and E2 must occupy the right end of the human capital distribution. The

proposition also implies that within the group of workers, the most talented workers must

be in the H sector in large city, while the lest talented workers must be in the L sector in

the small city, and thus pin down the set H1 and L2 on the real line. However, the relative

positions between H2 and L1 cannot be determined. In the first panel, individuals first

sort by industry, and then within each industry, they further sort into the cities. In this

case, ∪Jk=1Hk and ∪Jk=1Lk are connected sets, and we call this sorting as “industry-first”

sorting. Conversely, in the second panel, workers first sort into different cities, and then

into sectors. In this case, ∪Jk=1Hk are ∪Jk=1Lk are no longer connected sets and we name this

sorting as “location-first” sorting.

Human Capital
E1E2H1H2L1L2

(a) Industry-First Sorting

Human Capital
E1E2H1L1H2L2

(b) Location-First Sorting

Figure 4: Multiple Sorting Patterns with Two Cities

Which sorting pattern will emerge in equilibrium depends on the barriers between indus-

tries, S, and cities, C(Nk) − C(Nk′). In the two-city case, industry-first sorting appears if

S > C(N1)−C(N2), and location-first sorting appears if the reverse is true. To see this, first

assume that the barriers between industries are high relative to the barriers between cities.

In this case, the marginal worker x = supL2 shall be indifferent between moving into a larger

city while staying in the L sector and his current position, rather than moving into the H

sector in the same city. This implies that ∪Jk=1Lk is a connected set and industry-first sorting

arises. On the other hand, If the barriers between cities are higher than S, the marginal

worker x will be indifferent between his current positions and switching into the H sector in

the same city, before choosing to move to a larger city. In this case, the sets {Lk} and {Hk}
are interleaved, leading to location-first sorting. When J > 2, the sorting pattern depends

on the relationship between S and all the possible combinations of C(Nk′)−C(Nk). As {Nk}
is an endogenous object, the number of potential sorting patterns increases at the order of

J-factorial, and it is impossible to push the results further without other assumptions.

To narrow down the potential types of sorting patterns, we need to reduce the potential

combinations of C(Nk′)−C(Nk) between any k and k′. In the next proposition, we show that
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if the population distribution across cities, Nk, belongs to a broad family of exponential-like

distributions, then the sorting patterns and the equilibrium will be unique:

Proposition 3. The asymmetric equilibrium is unique if the population distribution across

cities is one of the following distributions: Pareto, exponential, Weibull, or Rayleigh29.

The common property we exploit to pin down the unique equilibrium from these family

of distributions is the shrinking spacing between adjacent cities on the population ladder. It

is well established in the statistics literature that if Nk follows one of the above distributions

and k′ > k, then Nk′ −Nk′+1 < Nk −Nk+1 (Kamps, 1991; Balakrishnan and Sultan, 1998).

Together with the monotonicity and convexity of C(·), the shrinking spacing in population

also implies that C(Nk)−C(Nk+1) is monotonically decreasing in k as well: the differences in

congestion costs shrink as we move down the city size ladder. From the shrinking congestion

costs, we can define a sequence of pivot cities, k∗1, k
∗
2, · · · such that

(1) C(Nk)− C(Nk+i) > S, for all k < k∗i , and

(2) C(Nk)− C(Nk+i) < S, for all k ≥ k∗i .

Sorting patterns can be exactly characterized using the sequence, and we provide the details

in the Appendix D.

The conditions on population distribution are broad enough to encompass both the em-

pirical and the theoretical findings on city size distributions. In the data, the population

distribution is often estimated to be Pareto (Gabaix and Ioannides, 2004); It also arises in

an array of theoretical models such as Behrens et al. (2014) and Gaubert (2017). Our model

allows for a wide range of potential distributions of population, depending on the distribution

of human capital, G(x). As our main predictions of within-city inequality is independent of

the cross-city distribution of population, we refrain from imposing specific assumptions on

29We are not aware of any work that addresses the spacing of log-normal distributions. Unlike the other
distributions in the above list, a simple expression does not exist because the CDF of log-normal distribu-
tions depends on Gauss error functions, which are not elementary. Balakrishnan and Chen (1999) provide
numerical methods to compute the moments of log-normal order statistics, and Nadarajah (2008) discuss the
explicit expression using hyper-geometric functions, which are not friendly to use analytically either. Never-
theless, all the simulation results indeed exhibit shrinking spacing among ordered samples from log-normal
distributions, similar to the distributions listed above.
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G(x) in this paper, and leave the characterization of G(x) and population distribution to

future work.

5 Conclusion

We document a rich pattern of within-city inequality in the US: while top-to-median wage

inequality tends to increase with city size, the median-to-bottom inequality decreases with

city size instead. We then develop a spatial model to explain the pattern with individuals

sorting along location, industry, and occupation. Our model delivers assortative matching

between individuals and location-industry-occupation cells in equilibrium. It predicts that

wage rate in low-paying industries needs to increase faster with city size than high-pay

industries; otherwise, the workers in the low-paying industries cannot afford living in large

cities. The validation test suggests that once the industry-city or occupation-city fixed

effects are controlled for, larger cities no longer see lower inequality on the left-tail, and

the relationship between city size and the inequality on the right-tail become muted. Once

the spatial variations of inter-industry wage premium are removed, the within-city wage

inequality has dropped by about half.
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Online Appendix, Not for Publication

A Tables and Figures

Table A.1: City Size and Inequality: Alternative Measures of City Size

(a) City Size = Total GDP

LHS = Residual Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Total GDP) -0.011** -0.009* 0.028*** 0.018***
(0.005) (0.005) (0.005) (0.004)

Average Years of Edu. 0.051*** 0.048*** -0.004 -0.012
(0.012) (0.012) (0.016) (0.012)

Race == White -0.418*** -0.399*** -0.258** -0.217**
(0.097) (0.102) (0.128) (0.099)

N 254 254 254 254
R-squared 0.516 0.567 0.568 0.599
State FE Yes Yes Yes Yes

(b) City Size = Population

LHS = Residual Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Population) -0.011** -0.010* 0.022*** 0.013*
(0.005) (0.005) (0.007) (0.007)

Average Years of Edu. 0.043*** 0.040*** 0.014 -0.001
(0.010) (0.010) (0.018) (0.015)

Race == White -0.373*** -0.364*** -0.321** -0.253**
(0.098) (0.099) (0.153) (0.122)

N 264 264 264 264
R-squared 0.557 0.587 0.543 0.556
State FE Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3). The measures of inequality are various percentile ratios of
hourly wage within an MSA. Population data come from U.S. 2000 census. For more details, see notes to
Table 1.
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(a) Total GDP, with Control
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(b) Total GDP, No Control
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(c) Population, with Control
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(d) Population, No Control

Figure A.1: City Size Elasticity of Wage at Different Percentiles, Robustness

Note: This figure reports the city size elasticity of wage rate (β1) from Equation (3) with log(wage rates) at
different percentiles within a city as dependent variable. The dashed line is 95 percent confidence interval.
Data source: IPUMS-USA, 2000.
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Table A.2: City Size and Inequality: alternative measures of residual wage

(a) City Size = Private GDP

LHS = Residual Wage Ineq. w/ FE Filtered Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Private Ind. GDP) -0.014*** -0.011** 0.019*** 0.007*
(0.005) (0.005) (0.005) (0.004)

Average Years of Edu. 0.041*** 0.031** 0.018 0.015
(0.013) (0.014) (0.013) (0.012)

Race == White -0.349*** -0.336*** -0.294*** -0.308***
(0.109) (0.104) (0.105) (0.091)

N 254 254 254 254
R-squared 0.466 0.535 0.560 0.544
State FE Yes Yes Yes Yes

(b) City Size = Total GDP

LHS = Residual Wage Ineq. w/ FE Filtered Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Total GDP) -0.013** -0.009* 0.021*** 0.009**
(0.005) (0.005) (0.005) (0.004)

Average Years of Edu. 0.039*** 0.029** 0.015 0.013
(0.013) (0.014) (0.013) (0.012)

Race == White -0.346*** -0.327*** -0.272** -0.295***
(0.109) (0.103) (0.105) (0.091)

N 254 254 254 254
R-squared 0.461 0.530 0.566 0.547
State FE Yes Yes Yes Yes

(c) City Size = Population

LHS = Residual Wage Ineq. w/ FE Filtered Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Population) -0.015*** -0.012** 0.016** 0.005
(0.005) (0.005) (0.006) (0.006)

Average Years of Edu. 0.034*** 0.023* 0.028** 0.018
(0.012) (0.013) (0.014) (0.013)

Race == White -0.321*** -0.309*** -0.335*** -0.336***
(0.109) (0.109) (0.121) (0.110)

N 264 264 264 264
R-squared 0.497 0.555 0.560 0.533
State FE Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3). The residual wage is computed from estimating equation 1
while controlling for industry and occupation fixed effects in addition. For more details, see notes to Table
1.
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Table A.3: City Size and Inequality: Raw Wage

(a) City Size = Private GDP

LHS = Raw Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Private Ind. GDP) -0.018*** -0.012** 0.047*** 0.031***
(0.007) (0.005) (0.008) (0.005)

Average Years of Edu. 0.824*** 0.688*** 0.092 0.022
(0.165) (0.136) (0.228) (0.167)

Race == White -0.495*** -0.386*** -0.236 -0.113
(0.094) (0.075) (0.151) (0.073)

N 254 254 254 254
R-squared 0.515 0.572 0.492 0.582
State FE Yes Yes Yes Yes

(b) City Size = Total GDP

LHS = Raw Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Total GDP) -0.019*** -0.012** 0.050*** 0.033***
(0.007) (0.005) (0.008) (0.005)

Average Years of Edu. 0.821*** 0.687*** 0.061 -0.003
(0.168) (0.138) (0.230) (0.166)

Race == White -0.499*** -0.388*** -0.214 -0.097
(0.094) (0.075) (0.150) (0.073)

N 254 254 254 254
R-squared 0.513 0.571 0.494 0.585
State FE Yes Yes Yes Yes

(c) City Size = Population

LHS = Raw Wage Ineq. Left Tail Right Tail

50-05 50-10 95-50 90-50

Ln(Population) -0.020*** -0.011** 0.036*** 0.028***
(0.007) (0.005) (0.011) (0.007)

Average Years of Edu. 0.723*** 0.591*** 0.449 0.223
(0.148) (0.125) (0.282) (0.190)

Race == White -0.453*** -0.341*** -0.329* -0.165*
(0.082) (0.060) (0.184) (0.087)

N 264 264 264 264
R-squared 0.550 0.616 0.461 0.540
State FE Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3) using observed wage instead of the residual wage. For more
details, see notes to Table 1.
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Table A.4: Population and Wage Inequality, Effects of Education and Racial Composition

LHS = 50-10 Wage Gap

(1) (2) (3) (4) (5)

Ln(Population) 0.019*** 0.008 0.003 0.002 -0.010*
(0.006) (0.005) (0.006) (0.005) (0.005)

Average Years of Edu. 0.026*** 0.040***
(0.009) (0.010)

Share of White Population -0.272** -0.364***
(0.108) (0.099)

N 264 264 264 264 264
R-squared 0.036 0.529 0.541 0.556 0.587
State FE No Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating Equation (3) by progressively adding more controls. We only report the
results with city size measured in the log of population for the sake of comparison with Baum-Snow and
Pavan (2013). Data source: IPUMS-USA, 2000.

Table A.5: City Size and Inequality: Other Percentile Gaps

Percentile Residual Wage Gap

95-05 90-10 75-25

Ln(Private Ind. GDP) 0.009 0.001 0.005
(0.007) (0.004) (0.004)

Average Years of Edu. 0.049** 0.023** 0.011
(0.019) (0.011) (0.011)

Race == White -0.624*** -0.327*** -0.208**
(0.160) (0.094) (0.096)

N 254 254 254
R-squared 0.627 0.660 0.632
State FE Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the results of estimating equation (3). The measures of inequality are various percentile ratios of
hourly residual wage within an MSA. For more details, see notes to Table 1.
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Table A.6: City Size and Inter-Industry Wage Premium, Robustness Check

(a) City Size = Population

LHS = Ln(Wage) Level Effect Continuous Measure Binary Measure

(1) (2) (3) (4) (5)

Ln(City Size) 0.047*** 0.049*** 0.050***
(0.000) (0.001) (0.001)

(Avg. Ind. Premium)

× Ln(City Size) -0.026*** -0.016***
(0.004) (0.004)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.005*** -0.003***
(0.001) (0.001)

Age 0.013*** 0.013*** 0.013*** 0.013*** 0.013***
(0.000) (0.000) (0.000) (0.000) (0.000)

Years of Edu. 0.050*** 0.050*** 0.047*** 0.050*** 0.048***
(0.000) (0.000) (0.000) (0.000) (0.000)

Married 0.194*** 0.194*** 0.197*** 0.194*** 0.198***
(0.001) (0.001) (0.001) (0.001) (0.001)

Race == White 0.124*** 0.124*** 0.132*** 0.124*** 0.133***
(0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,215,182 1,215,182 1,237,695 1,237,695
R-squared 0.420 0.421 0.431 0.420 0.431
Industry FE Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes
City FE No No Yes No Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of equation (5) with variations. The left-hand-side variable is the logarithm of observed
wage and “city size” is measured as population. “Average Industry Premium” is a continuous measure
computed from estimating equation (4), and “High-Premium Industry Dummy” is the associated binary
measure in which the average premium is higher than the median. Data source: IPUMS-USA, 2000.
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Table A.7: Robustness Check: Different Definition of “High-Premium Industries”

(a) City Size = GDP

LHS = Ln(Wage) > 25% > 75%

(1) (2) (3) (4)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.004*** -0.003*** -0.004*** -0.003***
(0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.422 0.430 0.422 0.430
Industry FE Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes
City FE No Yes No Yes

(b) City Size = Population

LHS = Ln(Wage) > 25% > 75%

(1) (2) (3) (4)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.005*** -0.003*** -0.007*** -0.004***
(0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.420 0.431 0.420 0.431
Industry FE Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes
City FE No Yes No Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of Equation (5) with with binary measures of “high-premium industry”. A high-
paying industry is defined as those above the 25th or the 75th percentile among all the 201 industries.
Table 3, the benchmark results, uses the 50th percentile as the cutoff. The left-hand-side variable is the
logarithm of observed wage and “city size” is measured as private industry GDP or population. Data source:
IPUMS-USA, 2000.
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Table A.8: Robustness Check: the Effects of Specialization

(a) City Size = GDP

LHS = Ln(Wage) ≥ 50 Cities ≥ 100 Cities ≥ 200 Cities

(1) (2) (3) (4) (5) (6)

(Avg. Ind. Premium)

× Ln(City Size) -0.012*** -0.012*** -0.005*
(0.003) (0.003) (0.003)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.003*** -0.003*** -0.002**
(0.001) (0.001) (0.001)

N 1,214,781 1,237,294 1,208,792 1,231,305 1,062,965 1,085,478
R-squared 0.431 0.430 0.431 0.430 0.427 0.426
Industry FE Yes Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes

(b) City Size = Population

LHS = Ln(Wage) ≥ 50 Cities ≥ 100 Cities ≥ 200 Cities

(1) (2) (3) (4) (5) (6)

(Avg. Ind. Premium)

× Ln(City Size) -0.016*** -0.016*** -0.010**
(0.004) (0.004) (0.004)

(High-Premium Ind. Dummy)

× Ln(City Size) -0.003*** -0.003*** -0.002*
(0.001) (0.001) (0.001)

N 1,214,781 1,237,294 1,209,590 1,232,103 1,097,275 1,119,788
R-squared 0.431 0.431 0.431 0.431 0.430 0.429
Industry FE Yes Yes Yes Yes Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of Equation (5) with all the fixed effects while dropping the industries that are
concentrated in less than 50, 100, or 200 cities. Table 3, the benchmark results, uses all the industries. The
left-hand-side variable is the logarithm of observed wage and “city size” is measured as private industry
GDP or population. Data source: IPUMS-USA, 2000.
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Table A.9: City Size and Tradable Industry Wage Premium, Robustness Check

LHS = Ln(Wage) Benchmark Def. Alternative Def.

(1) (2) (3) (4) (5) (6)

Tradable Ind. Dummy 0.062*** 0.072***
(0.001) (0.001)

Tradable Ind. Dummy
× Ln(City Size) -0.019*** -0.016*** -0.026*** -0.022***

(0.001) (0.001) (0.001) (0.001)
Ln(City Size) 0.049*** 0.057*** 0.049*** 0.057***

(0.000) (0.001) (0.000) (0.001)
Age 0.014*** 0.013*** 0.013*** 0.014*** 0.013*** 0.013***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Years of Edu. 0.055*** 0.049*** 0.047*** 0.054*** 0.049*** 0.047***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Married 0.204*** 0.194*** 0.198*** 0.203*** 0.194*** 0.198***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Race == White 0.128*** 0.125*** 0.133*** 0.129*** 0.124*** 0.133***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.403 0.421 0.431 0.403 0.421 0.431
Industry FE No Yes Yes No Yes Yes
Occupation FE Yes Yes Yes Yes Yes Yes
City FE No No Yes No No Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. This table
reports the estimation of equation (5) with variations. “City size” is measured as population. “Benchmark”
definition of tradable industries include agriculture, manufacturing and construction industries in the 1990
industry classifications, and “alternative” definition classifies construction industries as non-tradable. Data
source: IPUMS-USA, 2000.
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Table A.10: Entrepreneurial Wage Premium and City Size, Robustness Check

LHS = Ln(Wage) Benchmark Def. Alternative Def.

(1) (2) (3) (4) (5) (6)

Entrepreneur Dummy 0.327*** 0.118*** 0.620*** 0.469***
(0.002) (0.024) (0.006) (0.080)

Entrepreneur Dummy
× Ln(City Size) 0.014*** 0.024*** 0.010* 0.024***

(0.002) (0.002) (0.005) (0.005)
Age 0.014*** 0.014*** 0.013*** 0.014*** 0.014*** 0.013***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Years of Edu. 0.068*** 0.068*** 0.047*** 0.073*** 0.073*** 0.047***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Married 0.227*** 0.227*** 0.198*** 0.236*** 0.236*** 0.198***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Race == White 0.170*** 0.169*** 0.132*** 0.179*** 0.179*** 0.133***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695 1,237,695
R-squared 0.391 0.391 0.431 0.384 0.384 0.431
Industry FE Yes Yes Yes Yes Yes Yes
Occupation FE No No Yes No No Yes
City FE Yes Yes Yes Yes Yes Yes

Note: * p<0.10, ** p<0.05, *** p<0.01. Huber-White robust standard errors in parentheses. Results of
estimating Equation (6). “City size” is measured as population. “Benchmark Def.” includes all the occu-
pations listed in Table A.11 as entrepreneurs, while “Alternative Def.” only includes the “Chief executives
and public administrators” (the 3rd row). Data source: IPUMS-USA, 2000.

Table A.11: Definition of Entrepreneurs, U.S.

Occupation, 1990 basis No. %

Managers and administrators, n.e.c. 69,863 58.54%
Managers and specialists in marketing, advertising, and public relations 18,669 15.64%
Chief executives and public administrators 15,482 12.97%
Financial managers 11,389 9.54%
Human resources and labor relations managers 3,939 3.30%
Total 119,342 100.00%

Note: This table reports the definition of entrepreneurs used in the estimation of Equation (6). In the
benchmark regression, all the individuals with occupations listed above are defined as entrepreneurs. In the
robustness checks with stricter definition of entrepreneurs, only those whose occupation is “Chief executives
and public administrators” are defined as entrepreneurs. Data source: IPUMS-USA, 2000. Occupation
definition follows the 1990 census standard.
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Table A.12: Sorting of High-Skilled Individuals across Cities

Pr(Large City), Logit Pr(Entrepreneurs), Logit Ln(Avg. Years of Edu.), OLS

(1) (2) (3) (4) (5) (6)

College and Above 1.443*** 1.530*** 4.454*** 3.726***
(0.005) (0.006) (0.033) (0.032)

College and Above ×
Large City 1.366***

(0.010)
Large City Dummy 0.042*** 0.053***

(0.007) (0.010)
Age 1.002*** 1.021*** 1.021***

(0.000) (0.000) (0.000)
Married 0.919*** 1.723*** 1.737***

(0.004) (0.013) (0.013)
Race == White 0.553*** 1.988*** 2.052***

(0.003) (0.020) (0.020)
Constant 0.863*** 1.327*** 0.007*** 0.007***

(0.002) (0.010) (0.000) (0.000)

N 1,237,695 1,237,695 1,237,695 1,237,695 254 254
R-squared 0.068 0.342
State FE N/A N/A N/A N/A No Yes

Note: The first two columns report logit regressions in which we study the likelihood of highly-educated
individuals living in larger cities. The odds ratios are reported in column 1 and 2. Column 3 and 4 report
the OLS regression of average years of education on a large city dummy. “Large cities” refer to cities with
higher-than-median private industry GDP. Point estimates are reported in Column 3 and 4.
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B Data Description

The individual-level data come from IPUMS in 2000. The original dataset contains 6.44
million individuals. We restrict the sample to working population younger than 65. We
also drop the individuals working in government, military, religious organizations and labor
unions, or self-employed. We compute the hourly wage as total weekly wage income divided
by usual hours worked in a week, and then drop the individuals whose hourly wage is smaller
than the federal minimum wage of 7.5 dollars. These restrictions leave us with a sample of
1.23 million individuals to compute various measures of inequality. We define wage income
as “total wage and salary”(variable name incwage) in the dataset.

We define the city to which an individual belongs as the metropolitan area in which
the individual works (pwmetro). Under this definition, if an individual works in Detroit
(MSAcode 2160 ) but lives in Ann Arbor (MSAcode 440 ), we treat this individual as a
member of the city of Detroit. The sectoral level GDP for each metropolitan area come
from the Bureau of Economic Analysis’s(BEA) Regional GDP database in 2001. We match
the metropolitan area in IPUMS and in the BEA dataset by name. The matched dataset
contains 254 metropolitan areas. We use two definitions of GDP as measures of the economic
size of a metropolitan area: total GDP and private industry GDP. The difference between
the two is the government spending.

In our estimations reported in Section 2, we control for the state dummy variables and
the racial compositions of each city. In most of the cases, a metropolitan area is located
within a single state. In cases where a metropolitan area spans over two or three states, we
use the state in which the majority of the population of the MSA is located in. Our results
are robust if we randomize the state assignments. We control for the racial composition of
each metropolitan area by the share of the white population, which is recorded in the dataset
as race equals to 1.

C Congestion Disutility

In this appendix, we provide a simple framework to micro-found the assumption that part
of individual’s utility is decreasing with the size of the city due to congestion. Our baseline
model assumes that the individual’s utility function in city j is

V = yj − C(Rj),

where yj is the utility derived from consumption, and C(Rj) is the congestion disutility.
Assume that instead of a reduced-form congestion dis-utility, individuals instead need to

consume both the :
V = yj +Gj,

where y denotes individual consumption of the tradable and the non-tradable goods other
than housing, which is the same as in the main model. The consumption of y depends on
the human capital and the income of the individual.

The utility also depends on the consumption of public goods, g. We assume that the
supply of the public goods, G(N), depends positively on the size of the city (G′(N) ≥ 0).
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This is to capture the idea that more populous cities have a higher budget to provide the
infrastructure and other public services. We also assume that the public good is divisible,
and all the residents equally share the consumption of the public goods. This implies that
larger population crowd-out the consumption of the public good. In the equilibrium the
following holds

g =
G(N)

N
.

The congestion disutility in the main model can in turn be expressed as

C(N) = −g = −G(N)

N
.

We further assume that G(N)−G′(N)N > 0 so that C ′(N) > 0 and also G′(N)−G(N)/N >
1/2G′′(N)N so that C ′′(N) > 0 as well.

D Proofs

D.1 Lemma 1

Proof. We separately discuss three potential cases:

1. If ω, ω′ ∈ {H,L}, the single crossing condition is straightforward. This is because
V H
k (x) and V L

k (x) functions are linear, and thus they can only intersect once at most on
the entire real line. Therefore there exist at most one x ∈ R+ such that V ω

k (x) = V ω′
k′ (x),

if ω, ω′ ∈ {H,L}.

2. If ω = ω′ = E, then the functions V E
k (x) and V E

k′ (x) are both exponential functions.
Define the difference between the two as

g(x) = V E
k′ (x)− V E

k (x) = (AEk′ − AEk ) (ψ(x))σ−1 − (BE
k′ −BE

k ).

The g(x) function is monotonic due to the monotonicity of (ψ(x))σ−1, and therefore
there is exists only one point at which g(x) = 0. By the same logic, there exists at
most one x ∈ R+ such that V E

k (x) = V E
k′ (x).

3. In the last case, we consider when ω ∈ {H,L} and ω′ = E. Again, define the difference
as

g(x) = V E
k′ (x)− V ω

k (x) = AEk′ (ψ(x))σ−1 − Aωkx− (BE
k′ −Bω

k ).

This function is not necessarily monotonic. However, note that the second derivative
of g(x) is

g′′(x) = AEk (σ − 1)
[
ψ(x)σ−3ψ′(x) + ψ′′(x)ψ(x)σ−2

]
which is everywhere positive due to the monotonicity and the convexity of ψ(x). This
implies that the first derivative, g′(x), is a monotonic function so there exists only one
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x′ such that g′(x′) = 0. By Rolle’s theorem, a unique solution of g′(x) implies that at
most there are two solutions of the g(x) function on the entire real line.

Note that we have assumed that f is large enough so that the individual x = 0 cannot
be entrepreneurs. This means that g(x) < 0,∀(k′, k, ω). Also note that:

lim
x→(−∞)

g(x) = −Aωkx− (BE
k′ −Bω

k′) = +∞.

As the g(x) function is continuous, it implies that there exists at least one solution for
x between 0 and −∞. As we have already shown that g(x) can obtain at most two
solutions on the entire real line, we can infer that there exists at most one solution of
x between 0 and +∞ such that g(x) = 0.

We have shown that in all cases, there exists at most one solution of x. Also note that
we cannot have a case in which there exists no solution on {R}+, as it would imply either
V ω
k (x) > V ω′

k′ (x) or V ω
k (x) < V ω′

k′ (x). In either case, one of the sets ωk or ω′k′ , will be empty.
Therefore we can conclude that there exists exactly one x ∈ R+ such that V ω

k (x) = V ω′
k′ (x).

D.2 Proposition 1

Proof. Define the difference between the choices as:

g(x) = V ω′
k′ (x)− V ω

k (x).

We first prove that if x′ ≥ supωk, then Bω′
k′ > Bω

k . As x′ prefers the choice (k′, ω′), it
must be the case that g(x′) > 0. We also know that ∀x ∈ wk, g(x) < 0 as they prefer
(k, ω) to (k′, ω′) by revealed preference. As Lemma 1 shows, there only exists one x∗ such
that g(x∗) = 0, we can infer that supωk ≤ x∗ ≤ x′. From this we can infer g(0) < 0 and
limx→∞ g(x) > 0.

We now separately discuss the cases:

1. If the choice ω, ω′ ∈ {H,L}, then g(0) = −(Bω′
k′ − Bω

k ) < 0 directly implies Bω′
k′ > Bω

k ,
and thus the result.

2. If ω = ω′ = E, then limx→∞ g(x) = limx→∞(Aω
′

k′ − Aωk )(ψ(x))σ−1. This can only be
positive when Aω

′
k′ > Aωk . Moreover, if Aω

′
k′ > Aωk , then we must have Bω′

k′ > Bω
k as well.

To see this, assume, Bω′
k′ < Bω

k . In this case

g(x) = (Aω
′

k′ − Aωk )(ψ(x))σ−1 − (Bω′
k′ −Bω

k ) > (Aω
′

k′ − Aωk )(ψ(x))σ−1 > 0

for all x, which contradicts with g(x) < 0,∀x ∈ wk.

3. If ω′ = E and ω ∈ {H,L}, then g(0) = Aω
′

k′ − (Bω′
k′ −Bω

k ). To have g(0) < 0, again we
must have −(Bω′

k′ −Bω
k ) < 0 because Aω

′
k′ > 0. Therefore Bω′

k′ > Bω
k in this case as well.
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4. Lastly, the case of ω = E and ω′ ∈ {H,L}. This case cannot happen because:

lim
x→∞

g(x) = lim
x→∞

[
Aω
′

k′x− AEk (ψ(x))(σ−1)
]

= lim
x→∞

[
Aω
′

k′ − (σ − 1)AEk (ψ(x))(σ−2) ψ(x)′
]

= −∞,

according to L’Hopital’s rule and the assumptions that ψ(x)′ > 0 and limx→∞ ψ(x) =
∞ . This contradicts with limx→∞ g(x) > 0, and therefore cannot happen.

In all four cases, we have Bω′
k′ > Bω

k , and therefore the result.
Next, we prove if Bω′

k′ > Bω
k , then x′ > supωk. Let x′ ∈ ω′k′ and x ∈ ωk. We know

g(x′) > 0 and g(x) < 0 by revealed preference. We also know that from Lemma 1 that
there only exists one x∗ such that g(x∗) = 0. To show inf ω′k′ > supωk, we need to show
either g(0) < 0 or limx→∞ g(x) > 0. Together with the single-crossing condition in Lemma
1, we can show that if any of the above inequality is true, then ∀x ∈ [0, x∗), g(x) < 0, and
∀x ∈ (x∗,∞), g(x) > 0. This implies x < x∗ for all x ∈ ωk and x′ > x∗, for all x′ ∈ ω′k′ and
in turn, x′ > x∗ > supωk.

Now we discuss again, case by case.

1. ω, ω′ ∈ {H,L}. g(0) = −(Bω′
k′ −Bω

k ) < 0.

2. ω = ω′ = E. limx∞ g(x) = limx∞(Aω
′

k′ − Aωk ) (ψ(x))σ−1. Using the same argument, we
can infer Aω

′
k′ > Aωk , otherwise g(x) < 0,∀x ∈ ω′k′ , which is a contradiction. Further-

more, Aω
′

k′ > Aωk implies limx∞ g(x) =∞ > 0.

3. ω′ = E and ω ∈ {H,L}. In this case, our assumptions on f > 0 and ψ(0) = 0 imply
g(0) < 0.

4. ω = E and ω′ ∈ {H,L}. This case cannot happen as shown above, limx→∞ g(x) = −∞
regardless of the assumption on Bω

k and Bω′
k′ . By assumption we also have g(0) < 0.

This means either g(x) < 0 for all x, or the single-crossing condition is violated. Neither
can happen in the equilibrium.

As in all cases we have either g(0) < 0 or limx→∞ g(x) > 0, we have proved that Bω′
k′ > Bω

k

implies x′ > supωk for all x′ ∈ ω′k′ .

D.3 Corollary 1

Proof. (i) Within any city k, we have:

BE
k = C(Nk) + S + f

wk

Pα
k z

1−α
k

≥ BH
k = C(Nk) + S

≥ BL
k = C(Nk).

Proposition 1 then directly applies that inf Ek > supHk and inf Hk > supLk.
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(ii) First note that Nk′ > Nk implies C(Nk′) > C(Nk) due to the monotonicity of C(·). To
see the matching across cities, again we directly apply Proposition 1 by ranking the
entry barriers. We discuss the case by case:

(a) ω = H. We have BH
k′ = C(Nk′) + S > C(Nk) + S = BH

k , and therefore inf Hk′ >
supHk.

(b) ω = L. We have BL
k′ = C(Nk′) > C(Nk) = BL

k , and therefore inf Lk′ > supLk.

(c) ω = E. Note that BH
k′ > BH

k implies AHk′ =
wk′

Pα
k′z

1−α
k′

> wk
Pαk z

1−α
k

= AHk . If the

inequality is not true, then

V H
k′ − V H

k = (AHk′ − AHk )x− (BH
k′ −BH

k ) < 0

for all x, which cannot happen in equilibrium.
wk′

Pα
k′z

1−α
k′

> wk
Pαk z

1−α
k

implies:

BE
k′ = C(Nk′) + S + f

wk′

Pα
k′z

1−α
k′

≥ C(Nk) + S + f
wk

Pα
k z

1−α
k

= BE
k ,

which in turn implies inf Ek′ > supEk.

(iii) Assume ω ∈ {H,L}, and define:

g(x) = V E
k (x)− V ω

k′ (x)

as the premium of entrepreneurship in city k over all the other non-entrepreneurship
jobs in any other city k′. Note that by L’Hopital’s rule:

lim
x→∞

g(x) = lim
x→∞

[
AEk (ψ(x))σ−1 − Aωk′x

]
= lim

x→∞
(σ − 1)AEk (ψ(x))σ−2 ψ(x)′ =∞ > 0.

This implies that as x grows larger, entrepreneurship is always more attractive due to
the convexity of the ψ(x) function. Applying the single-crossing property in Lemma
1, we know that for all (k′, ω), ω ∈ {H,L} and (k,E), there exists a unique x(k,E),(k′,ω)

such that g(x(k,E),(k′,ω)) = 0 and inf Ek > x(k,E),(k′,ω) > supωk′ . This further implies
that

inf Ek > sup(∪Jk′=1 ∪ω={H,L} ωk′).

As the inequality applies to all k, we can conclude:

inf ∪Jk=1Ek > sup(∪Jk′=1 ∪ω={H,L} ωk′).

Now define

xE = inf ∪Jk=1Ek.

If x > xE, then x > sup∪Jk′=1∪ω={H,L}, which in turn implies that x /∈ ∪Jk′=1∪ω={H,L}.
We can then infer x ∈ Ek for some k. The converse if also true. If x ∈ ∪Jk=1Ek, then
trivially x > inf ∪Jk=1Ek = xE.
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D.4 Corollary 2

Proof. Note that if Nk′ > Nk, then C(Nk′) > C(Nk) by the monotonicity of the C(·) function.

(i) C(Nk′) > C(Nk) implies BH
k′ > BH

k . In this case, we must have AHk′ =
wk′

Pα
k′z

1−α
k′

>
wk

Pαk z
1−α
k

= AHk . If the inequality is not true, then

V H
k′ − V H

k = (AHk′ − AHk )x− (BH
k′ −BH

k ) < 0

for all x, which cannot happen in equilibrium.

(ii) Apply the same logic above to the L sector, we know ALk′ =
zk′

Pα
k′z

1−α
k′

> zk
Pαk z

1−α
k

. This

expression simplifies to
zk′
Pk′

> zk
Pk

. Conditional on this, the result in part (i) then

simplifies to
wk′
Pk′

> wk
Pk

.

(iii) Apply the same logic to the entrepreneurs, we also have AEk′ =
πk′

Pα
k′z

1−α
k′

> AEk = πk
Pαk z

1−α
k

.

Plug in the result that
zk′
Pk′

> zk
Pk

, we get
πk′
Pk′

> πk
Pk

.

(iv) GDP in city j can be written as the total income earned by entrepreneurs, together
with workers from H and L sector:

Rj =

∫
x∈Ej

∑
k

αRkP
σ−1
k

(
σ

σ − 1

τkjwj
bjψ(x)

)1−σ
dG (x) + zj

∫
x∈Nj

xγdG (x) .

Since zj
∫
x∈Nj x

γdG (x) = (1− α)Rj, the above is equivalent to:

αRj =

∫
x∈Ej

∑
k

αRkP
σ−1
k

(
σ

σ − 1

τkjwj
bjψ(x)

)1−σ
dG (x) .

Profit for entrepreneur of x in city j is given as:

πj(x) =
1

σ

∑
k

αRkP
σ−1
k

(
σ

σ − 1

τkjwj
bjψ(x)

)1−σ
− fwj.

Therefore, the real GDP in city j can be written as:

αRj

Pj
=

∫
x∈Ej

(πj(x) + fwj)σ

Pj
dG(x).

Given results in (ii) and (iii), we have both πj(x)/Pj > πi(x)/Pi and wj(x)/Pj >
wi(x)/Pi hold. This completes the proof.
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D.5 Proposition 2

Proof. (i) Define xk and xk′ to be the cutoff where individual is indifferent between be-
coming a worker in H and L sector of city k and k′, respectively:

V H
k (xk) = V L

k (xk)

V H
k′ (xk′) = V L

k′ (xk′)

We first show that if Nk′ > Nk, then xk′ > xk.

The ranking of the A terms can be one of the two possibilities:

AHk′ > ALk′ > AHk > ALk

or

AHk′ > AHk > ALk′ > ALk

We first focus on the first case. Define x∗ as the solution to V L
k′ (x

∗) = V L
k′ (x

∗), the
individual indifferent between working in the L sector in the two cities. First note

we must have xk′ > x∗. If this is not the case and xk′ < x∗, then all the x < x∗ prefer
Lk to Lk′ ; all the x > x∗ > xk′ prefer Hk′ to Lk′ , and thus no one works in Lk′ . This
implies xk′ > x∗. We must also have xk < x∗, otherwise all the x < xk prefer Lk to Hk;
all the x > xk > x∗ prefer Lk′ to Hk because ALk′ > AHk , and thus no worker would be
employed in Hk. This proves that xk′ > xk. A similar argument carries through in the
second case.

We can then solve xk, xk′ as follows:

xk =
S(

α
Pk

)α (
1−α
zk

)1−α
(wk − zk)

xk′ =
S(

α
Pk′

)α (
1−α
zk′

)1−α
(wk′ − zk′)

xk′ > xk implies: (
zk′

Pk′

)α
wk′ − zk′

zk′
<

(
zk
Pk

)α
wk − zk
zk

From Proposition 2, we know
zk′
Pk′

> zk
Pk

, so the above inequality reduces to:

wk − zk
zk

>
wk′ − zk′

zk′
wk
zk

>
wk′

zk′
.

This establishes the proof.
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(ii) First note that within any city, ψ(x)σ−1/x is increasing in x as long as σ > 2:

∂
(
ψ(x)(σ−1)/x

)
∂x

= ψ(x)(σ−2) 1

x

[
(σ − 1)ψ′(x)− ψ(x)

x

]
,

= ψ(x)(σ−2) 1

x
[(σ − 1)ψ′(x)− ψ′(ζ)] , ζ ∈ (0, x) ,

where we apply the mean value theorem for the last step. Since ψ′′(x) > 0, so the above

is positive if σ > 2. πkψ(x)(σ−1)/x is increasing in x implies that πkψ(x)σ−1/x
wk

increases

with x as well. Therefore in any city k, the minimum of πkψ(x)σ−1/x/(wkx) should
be equal πkψ(xk)

σ−1/x/(wkxk), where xk denotes the efficiency labor supply that the
least talented entrepreneur has.

Second, we show

πk′ψ(xk′)
σ−1

(wk′xk′)
>
πkψ(xk)

σ−1

(wkxk)
(10)

Note that we can express profit and real GDP in city j as follows:

πkψ(xk)
σ−1 =

1

σ

J∑
j=1

αRjP
σ−1
j

(
σ

σ − 1

τjkwk
bk

)1−σ
ψ(xk)

σ−1 − fwk

Rk =

∫
x∈Ek

J∑
j=1

αRjP
σ−1
j

(
σ

σ − 1

τjkwk
bkψ(xk)

)1−σ
dG (x)

Therefore, we have

πkψ(xk)
σ−1 + fwk
Rk

=
1

σ

(bkψ(xk))
σ−1∫

x∈Ek (bkψ(x))σ−1 dG (x)

πkψ(xk)
σ−1

Pk
=
Rk

Pk

1

σ

(bkψ(xk))
σ−1∫

x∈Ek (bkψ(x))σ−1 dG (x)
− fwk

Pk

Moreover, given the definition of price index, we can write real wage wk
Pk

into the fol-
lowing:

wk
Pk

=

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) 1
σ−1
(

σ

σ − 1

)−1

Combine the two parts:

πkψ(xk)
σ−1

wk
=

πkψ(xk)σ−1

Pk
wk
Pk

=

Rk
Pk

1
σ

(bkψ(xk))σ−1∫
x∈Ek

(bkψ(x))σ−1dG(x)(∫
x∈Ek (bkψ(x))σ−1 dG (x)

) 1
σ−1 ( σ

σ−1

)−1
− f

Since Rk′/Pk′ > Rk/Pk as shown in Corollary 2, we only need to show

(bk′ψ(xk′))
σ−1

(∫
x∈Ek′

(bk′ψ(x))σ−1 dG (x)

) σ
1−σ

> (bkψ(xk))
σ−1

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) σ
1−σ

(11)
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to have
πk′ψ(xk′ )

σ−1

wk′
> πkψ(xk)σ−1

wk
.

Differentiate (bkψ(xk))
σ−1
(∫

x∈Ek (bkψ(x))σ−1 dG (x)
) σ

1−σ
with respect to xk:

(σ − 1) (bkψ(xk))
σ−2 bkψ

′(xk)

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) σ
1−σ

− (bkψ(xk))
σ−1 σ

1− σ

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) 2σ−1
1−σ

(bkψ(xk))
σ−1 g (xk)

= (bkψ(xk))
σ−1

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) σ
1−σ
[

(σ − 1)

bkψ(xk)
− σ

1− σ
g (xk)∫

x∈Ek (bkψ(x))σ−1 dG (x)

]

= (bkψ(xk))
σ−1

(∫
x∈Ek

(bkψ(x))σ−1 dG (x)

) σ
1−σ
[

(σ − 1)

bkψ(xk)
+

g (xk)
(

1
σ−1

+ 1
)∫

x∈Ek (bkψ(x))σ−1 dG (x)

]

when σ > 2, it is straightforward to show the above is positive. Proposition 1 states
that larger cities have better entrepreneurs, which means xk′ > xk, which in turn

implies that the inequality in Eq. (11) is true, and thus
πk′ψ(xk′ )

(σ−1)

wk′
> πkψ(xk)(σ−1)

wk
.

D.6 Proposition 3

Proof: Our proof takes four steps:

(i) First, we show that if we rank the cities by the size so that N1 > N2 > N3 > · · · , NJ ,
and the distribution of city size follows one of the following specific distributions, then
the expected one-step spacing in population, E(Nk)− E(Nk+1), is decreasing in k.

We prove the result on the pattern of shrinking spacing separately for each distribution.

(1) Exponential Distribution. Kamps (1991) provided a general formula to explic-
itly characterize any moment of 1-step spacing between exponentially distributed
order statistics. If we apply his formula to the first moment and fit it into our
notations, it is straight forward to show that the expected spacing between two
cities is

E(Nk)− E(Nk+1) =
1

J − (J − k) + 1
=

1

k + 1
.

which is clearly decreasing in k.

(2) Pareto Distribution. Kamps (1991) also provided a general formula for the
Pareto distribution, which we manipulate similarly as in the case of exponential
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distribution. For any integer q < 0:

E(Nk)− E(Nk+1) =
J !(J − (J − k) + q)!

(J + q)!(J − (J − k) + 1)!

=
J !

(J + q)!

(k + q)!

(k + 1)!

=
J !

(J + q)!

1∏1
i=q+1(k + i)

,

which is again, clearly decreasing in k.

(3) Weibull and Rayleigh Distribution Balakrishnan and Sultan (1998) showed
that for these two distributions, the expected spacing can be expressed as

E(Nk)− E(Nk+1) =
β

d(J − (J − k) + 1)
=

β

d(k + 1)
,

which is decreasing in k. The constants β and d are both positive. We reach our
formula by setting α = 0 in Eq.(21.6) in Balakrishnan and Sultan (1998).

Given the above distributions, we can infer that the spacing in the expected population
distribution must be decreasing in the city index. In the rest of the proof, we omit the
expectation operator for notational ease.

Nk′ −Nk′+1 < Nk −Nk+1 (12)

(ii) In the second step, we show that if the spacing between population distribution is
shrinking over city index k, then the spacing between the congestion costs must be
shrinking as well.

We first show that the 1-step spacing must be smaller if k is higher. In the model
we assume that the C(·) is monotone and convex. The definition of convex function
implies:

C(Nk)− C(Nk+1)

Nk −Nk+1

≥ C(Nk′)− C(Nk′+1)

Nk′ −Nk′+1

.

Combine this with inequality in Eq (12), we immediately have:

δk(1) = C(Nk)− C(Nk+1) > C(Nk′)− C(Nk′+1) = δk′(1).

To ease notations, we define the i-step spacing between the congestion costs in city k
and k + i as:

δk(i) ≡ C(Nk)− C(Nk+i) =
i−1∑
k=0

(C(Nk+k)− C(Nk+k+1)) =
i−1∑
k=0

δk+k(1).

Note that the i-step spacing is equivalent to the summation of i 1-step spacing, as
shown in the last two parts of the equation above.
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It is then straight forward to see that the i-step spacing shrink over city index as well,
that is, δk′(i) < δk(i):

δk′(i) =
i−1∑
j=0

δk′+j(1) <
i−1∑
j=0

δk+j(1) = δk(i)

(iii) As the sequence of δk(i) are declining in city size, there exists a city index {k∗i } such
that S is sandwiched between δk∗i (i) and δk∗i−1(i) :

δJ−i(i) < δJ−i+1(i)... < δk∗i (i) < S < δk∗i−1(i)... < δ1(i),

or formally, we define k∗i ∈ {1, 2, · · · , J} as the city that the following two conditions
are both satisfied:

(1) δk(i) > S, for all k < k∗i , and

(2) δk(i) < S, for all k ≥ k∗i .

In the case of S > δ1(i), we define k∗i = 1; in the case of S < δJ−i(i), we define k∗i = J .

The last result we need before describing the sorting pattern is that the sequence of
{k∗i } is weakly increasing in i:

k∗1 ≤ k∗2, · · · k∗J−1 ≤ k∗J .

We prove this result by contradiction. Suppose we have i′ > i and k∗i′ < k∗i . By the
definition of k∗i , we know that δk(i) > S for all k < k∗i . By the definition of k∗i′ , we also
know δk∗

i′
(i′) < S. Moreover,

δk∗
i′
(i′) = δk∗

i′
(i) +

i′−i−1∑
j=0

δk∗
i′+i+j

(1) > δk∗
i′
(i).

and therefore we can infer δk∗
i′
(i) < S as well. However, this contradicts with δk(i) > S

for all k < k∗i , and therefore we must have

i′ > i =⇒ k∗i′ ≥ k∗i .

(iv) Now we are ready to characterize the sorting pattern. Corollary 1 states that all the
{Ek} occupy the right end of the real line, and therefore we only need to characterize
the distribution of workers across the cities.

We characterize the distribution city by city. Given the order of k∗i , we start from the
largest cities with k < k∗1. Corollary 1 also implies that within the set of workers, the
most talented workers are in H1, which is the H sector in the largest city. The next
group of workers either works in L1 or in H2, the next two potential groups with lower
entry barriers. In this case, since k < k∗1, we know δ1(1) = C(N1) − C(N2) > S, and
thus C(N1) > C(N2) + S. This implies that it is harder to choose L1 than H2, and
thus the next group of workers will be employed in L1. The group of workers following
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L1 face a choice between H2 and L2, in which the barriers to H2 will always be higher
(C(N2) + S > C(N2)), and thus they will be employed in H2. The same logic can be
applied to all the cities with k ≤ k∗1 and therefore we know among cities k < k∗1, the
workers will be sorted, by x from low to high, as

Lk∗1−1Hk∗1−1Lk∗1−2Hk∗1−2 · · ·L2H2L1H1

Now we consider the next group of cities with k∗1 ≤ k < k∗2. Within this group of cities,
we always have δk(1) < S and δk(2) > S. Again, the most talented workers will choose
the job with the highest entry barrier, Hk∗1 . The next group of workers, facing a choice
between Hk∗1+1 and Lk∗1 , however, since δk∗1 (1) = C(Nk∗1 )−C(Nk∗1+1) < S, and thus they
will choose to work in Hk∗1+1. The subsequent group face a choice now between Hk∗1+2

and Lk∗1 . As we know δk∗1 (2) = C(Nk∗1 ) − C(Nk∗1+2) > S, this group of workers will
choose Lk∗1 . The next group of workers then face the choice between Hk∗1+2 and Lk∗1+1.
Following similar logic, we can infer that the workers will choose Hk∗1+2. We can apply
this logic all the way till Lk∗2−2. The group of workers following Lk∗2−2 face a choice
between Lk∗2−1 and Hk∗2 and as δk∗2−1(1) < S. It follows that Hk∗2 will be preferred.
The next group, who choose between Hk∗2+1 and Lk∗2−1, prefer Lk∗2−1 as δk∗2−1(2) > S.
Taking stock, the sorting pattern so far is:

Lk∗2−1Hk∗2Lk∗2−2Hk∗2−1 · · ·Lk∗1+2Hk∗1+3Lk∗1+1Hk∗1+2Lk∗1Hk∗1+1Hk∗1 .

Note that the sorting pattern is characterized by two consecutive H sectors at the
beginning, and then again, H and L sectors taking turns with a 2-step spacing between
them, e.g. Lk followed by Hk+2.

The same pattern naturally extend to k∗2 ≤ k < k∗3. It is straightforward to verify that
the following sorting pattern holds:

Hk∗2+4Lk∗2+1Hk∗2+3Lk∗2Hk∗2+2Hk∗2+1.

Again, we observe two consecutive H sectors at the beginning, followed by inter-locking
L and H sectors, this time with a 3-step spacing.

We can continue this pattern until HJ is reached. At this point, there will be a group
of Lk choices left un-filled, and the remaining workers will directly sort into these L
sectors by the prediction of corollary 1. The number of cities with un-filled L sector
can be determined as the smallest i such that:

ī = argminiC(NJ−i)− C(NJ) > S

In the end, the left-tail of workers will be sorted as

LJLJ−1 · · ·LJ−īHJLJ−ī−1HJ−1 · · ·

In the end, the unique sorting pattern of individuals over (k, ω) on R+ that emerges
under the above-mentioned population distribution is summarized in Figure D.2:

As shown by the arguments above, this sorting pattern is unique.
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E1E2
· · ·EJH1L1H2L2· · ·Hk∗

1 −1Lk∗
1 −1Hk∗

1
Hk∗

1 +1Lk∗
1

Hk∗
1 +2

· · ·Lk∗
2 −1Hk∗

2 +1Hk∗
2 +2Lk∗

2
Hk∗

2 +3Lk∗
2 +1

· · ·HJ−1LJ−ī−1HJLJ−ī
· · ·LJ

Figure D.2: Sorting with Multiple Cities

E City Size and Human Capital Stock

We consider a case of two-city and focus on a “location-first” sorting pattern. Without loss
of generality, we assume the human capital distribution follows the exponential distribution.
In the equilibrium, the most talented agents become entrepreneurs in city 1; less talented
agents are first sorted into H and L sector in city 1, followed by the least talented ones
working in city 2. The cutoff human capital of being entrepreneur in city 1 is determined as:

A1e
xE1(σ−1) −B1 = A2e

xE1(σ−1) −B2.

The cutoff human capital between H and L sector within each city is determined as:

AH1 xH1 −BH
1 = AL1 xH1 −BH

1 ,

AH2 xH2 −BH
2 = AL2 xH2 −BL

2 .

Moreover, the cutoff human capital between being an entrepreneur in city 2 and a worker
of H sector in city 1 is given as:

AH1 xE −BH
1 = A2 (xE) exE(σ−1) −B2.

Finally, the cutoff human capital between being in L sector of city 1 and H sector of city
2 is:

AL1 x1 −BH
1 = AH2 x1 −BH

2 .

Denote Ri(i = 1, 2) as the total expenditure in city i. Given the Cobb-Douglas utility
function specification, αRi is the sales revenue from H sector. The CES preference over
composite variety from H sector implies a fraction (σ − 1) /σ of the total sales revenue are
spent on wages paid to the workers in the production. Labor market clearing condition from
H sector in each city is:

σ − 1

σ
αR1 = w1

∫ xE

xH1

xdG (x) ,

σ − 1

σ
αR2 = w2

∫ x1

xH2

xdG (x) .

The remaining a fraction 1− α of the total expenditure are devoted to the non-tradable
goods in L sector. Market clearing condition of L sector in each city is thus:

(1− α)R1 = z1

∫ xH1

x1

xdG (x) ,

(1− α)R2 = z2

∫ xH2

x

xdG (x) .
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Rj (j = 1, 2) denotes the total expenditure in city j, which in turn equals to the total
income earned by all the agents :∫

x

σAje
x(σ−1)Pα

j z
1−α
j dG (x) + (1− α)Rj = Rj, j = 1, 2.

The first part in above represents the profits and wage income earned by all the en-
trepreneurs and workers from the H sector. The second part is the income earned by workers
from L sector.

Rearranging the expressions above into the following:

R1 =
1

α

∫
xE1

σA1e
x(σ−1)Pα

1 z
1−α
1 dG (x) ,

=
σ

α
A1
λexE1(σ−1−λ)

1 + λ− σ Pα
1 z

1−α
1 .

R2 =
1

α

∫ xE1

xE

σA2e
x(σ−1)Pα

2 z
1−α
2 dG (x) ,

=
σ

α
A2λ

(
exE(σ−1−λ)

1 + λ− σ −
exE1(σ−1−λ)

1 + λ− σ

)
Pα

2 z
1−α
2 .

To establish the relation between city size and human capital stock, we compute the
human capital stock in the following.

H1 =

∫
xE1

xλe−λxdx+

∫ xE

xH1

xλe−λxdx+

∫ xH1

x1

xλe−λxdx

= e−λxE1

(
λxE1 + 1

λ

)
+ e−λxE

(−λxE − 1

λ

)
− e−λx1

(−λx1 − 1

λ

)
.

Human capital stock in city 2 is:

H2 =

∫ xE1

xE

xλe−λxdx+

∫ x1

xH2

xλe−λxdx+

∫ xH2

x

xλe−λxdx

= e−λxE1

(−λxE1 − 1

λ

)
− e−λxE

(−λxE − 1

λ

)
+ e−λx1

(−λx1 − 1

λ

)
− e−λx

(−λx− 1

λ

)
Human capital stock in city 1 depends on xE1, xE and x1, while the city size of city 1

only depends on xE1.

It is more straightforward to consider an autarky case, where the wage rate in both cities
are normalized to be 1. The total income at both cities can be obtained using the labor
market clearing condition in H sector:

R1 =
σ

(σ − 1)α

[
e−λxE

(−λxE − 1

λ

)
− e−λxH1

(−λxH1 − 1

λ

)]
R2 =

σ

(σ − 1)α

[
e−λx1

(−λx1 − 1

λ

)
− e−λxH2

(−λxH2 − 1

λ

)]
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We can further establish a relation between R1 and H1 as follows:

R1
(σ − 1)α

σ
= H1 − e−λxE1

(
λxE1 + 1

λ

)
+ e−λx1

(−λx1 − 1

λ

)
− e−λxH1

(−λxH1 − 1

λ

)
and

R2
(σ − 1)α

σ
= H2 − e−λxE1

(−λxE1 − 1

λ

)
+ e−λxE

(−λxE − 1

λ

)
+ e−λx

(−λx− 1

λ

)
− e−λxH2

(−λxH2 − 1

λ

)
As shown in the above two equations, the relationship between Ri and Hi is neither linear
nor log-linear; instead, higher order terms exist and thus controlling for one variable cannot
fully encapsulate the other variable in a linear regression setup. Instead, both variables need
to be controlled for on the right-hand-side of the equation, otherwise the estimation might
suffer from missing variable bias.
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